分析 首先作出点A关于y=x的对称点A′,从而得到PA=PA′,故此PA+PB=PA′+PB,由两点之间线段最短可知A′B即为所求.
解答
解:取点A′使OA′=OA,连接A′B.
∴点A′的坐标为(0,1).
∴点A′与点A关于y=-x对称.
∴PA′=PA.
∴PA+PB=PA′+PB.
由两点之间线段最短可知:当点A′、P、B在一条直线上时,PA+PB有最小值.
在Rt△A′OB中,A′B=$\sqrt{OA{′}^{2}+O{B}^{2}}$=$\sqrt{{1}^{2}+{3}^{2}}$=$\sqrt{10}$.
故答案为:$\sqrt{10}$.
点评 本题主要考查的是最短线路问题,勾股定理,熟知两点之间线段最短是解答此题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com