精英家教网 > 初中数学 > 题目详情

【题目】如图,已知ADAE分别是RtABC的高和中线,AB9cmAC12cmBC15cm,试求:

1AD的长度;

2)△ACE和△ABE的周长的差.

【答案】(1)AD的长度为cm;(2)△ACE和△ABE的周长的差是3cm

【解析】

1)利用直角三角形的面积法来求线段AD的长度;

2)由于AE是中线,那么BECE,再表示△ACE的周长和△ABE的周长,化简可得△ACE的周长﹣△ABE的周长=ACAB即可.

解:(1)∵∠BAC90°,AD是边BC上的高,

SACB=ABACBCAD

AB9cmAC12cmBC15cm

ADcm),

AD的长度为cm

2)∵AEBC边上的中线,

BECE

∴△ACE的周长﹣△ABE的周长=AC+AE+CE﹣(AB+BE+AE)=ACAB1293cm),

即△ACE和△ABE的周长的差是3cm

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD(AB<AD).

(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;
①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;
②作∠DAE的平分线交CD于点F;
③连接EF;
(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2+bx+ca0)的图象经过点A12).

1)当b1c=﹣4时,求该二次函数的表达式;

2)已知点Mt15),Nt+15)在该二次函数的图象上,请直接写出t的取值范围;

3)当a1时,若该二次函数的图象与直线y3x1交于点PQ,将此抛物线在直线PQ下方的部分图象记为C

①试判断此抛物线的顶点是否一定在图象C上?若是,请证明;若不是,请举反例;

②已知点P关于抛物线对称轴的对称点为P′,若P′在图象C上,求b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线与x轴交于点A(﹣5,0)和点B(3,0).与y轴交于点C(0,5).有一宽度为1,长度足够的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和Q,交直线AC于点M和N.交x轴于点E和F.

(1)求抛物线的解析式;
(2)当点M和N都在线段AC上时,连接MF,如果sin∠AMF= ,求点Q的坐标;
(3)在矩形的平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应学雷锋、树新风、做文明中学生号召,某校开展了志愿者服务活动,活动项目有戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.

(1)被随机抽取的学生共有多少名?

(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;

(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过A(﹣1,0),B(5,0),C(0,- )三点.

(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,折叠长方形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与BD重合,得折痕DG,若AB=4BC=3,求AG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=3x与双曲线y= (k≠0,且x>0)交于点A,点A的横坐标是1.

(1)求点A的坐标及双曲线的解析式;
(2)点B是双曲线上一点,且点B的纵坐标是1,连接OB,AB,求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,不添加辅助线,请写出一个能判断EB∥AC的条件:___________

查看答案和解析>>

同步练习册答案