精英家教网 > 初中数学 > 题目详情

【题目】如图,已知矩形ABCD(AB<AD).

(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;
①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;
②作∠DAE的平分线交CD于点F;
③连接EF;
(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为

【答案】
(1)

解:如图所示;


(2)
【解析】解:(1.)如图所示;

(2.)由(1)知AE=AD=10、∠DAF=∠EAF,
∵AB=8,
∴BE= =6,
在△DAF和△EAF中,

∴△DAF≌△EAF(SAS),
∴∠D=∠AEF=90°,
∴∠BEA+∠FEC=90°,
又∵∠BEA+∠BAE=90°,
∴∠FEC=∠BAE,
∴tan∠FEC=tan∠BAE= = =
所以答案是:
【考点精析】解答此题的关键在于理解矩形的性质的相关知识,掌握矩形的四个角都是直角,矩形的对角线相等,以及对解直角三角形的理解,了解解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:正方形ABCD的边长为8,点EF分别在ADCD上,AEDF2BEAF相交于点G,点HBF的中点,连接GH,则GH的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交BC于G.
(1)求证:BG=DE;
(2)若点G为CD的中点,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班参加一次智力竞赛,共a、b、c三题,每题或者得满分或者得0分,其中题a满分20分,题b、题c满分均为25分.竞赛结果,每个学生至少答对了一题,三题全答对的有1人,答对其中两道题的有15人,答对题a的人数与答对题b的人数之和为29,答对题a的人数与答对题c的人数之和为25,答对题b的人数与答对题c的人数之和为20,在这个班的平均成绩是__分.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校决定组织学生开展校外拓展活动,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲乙两种大客车,它们的载客量和租金如下表所示.学校计划此次拓展活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.

客车

甲种

乙种

载客量/(人/辆)

30

42

/(元/辆)

300

400

1)参加此次拓展活动的老师有 人,参加此次拓展活动的学生有 人;

2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为 辆.

3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,长方形OABC的顶点AC分别在x轴、y轴的正半轴上,点B的坐标为(84),将该长方形沿OB翻折,点A的对应点为点DODBC交于点E

1)求点E的坐标;
2)点MOB上任意一点,点NOA上任意一点,是否存在点MN,使得AM+MN最小?若存在,求出其最小值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC的面积为3BDDC21EAC的中点,ADBE相交于点P,那么四边形PDCE的面积为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从甲地到乙地有三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:

公交车用时的频数

公交车用时线路

合计

59

151

166

124

500

50

50

122

278

500

45

265

160

30

500

早高峰期间,乘坐_________(填)线路上的公交车,从甲地到乙地用时不超过45分钟的可能性最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ADAE分别是RtABC的高和中线,AB9cmAC12cmBC15cm,试求:

1AD的长度;

2)△ACE和△ABE的周长的差.

查看答案和解析>>

同步练习册答案