精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC的面积为3BDDC21EAC的中点,ADBE相交于点P,那么四边形PDCE的面积为(  )

A. B. C. D.

【答案】B

【解析】

连接CP.设CPE的面积是xCDP的面积是y.根据BDDC=21EAC的中点,得BDP的面积是2yAPE的面积是x,进而得到ABP的面积是4x.再根据ABE的面积是BCE的面积相等,得4x+x=2y+x+y,解得y= x,再根据ABC的面积是3即可求得xy的值,从而求解.

连接CP

CPE的面积是xCDP的面积是y
BDDC=21EAC的中点,
∴△BDP的面积是2yAPE的面积是x

BDDC=21

∴△ABD的面积是4x+2y

∴△ABP的面积是4x
4x+x=2y+x+y
解得y= x
又∵ABC的面积为3

4x+x=
x=
则四边形PDCE的面积为x+y=
故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB=AC,∠A=36°,直线MN垂直平分ACABM

1)求∠BCM的度数;(2)若AB=5BC=3,求△BCM的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,∠B=90°AB=8cmBC=6cmPQ分别为ABBC边上的动点,点P从点A开始沿AB方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.

1)出发2秒后,求PQ的长;

2)从出发几秒钟后,△PQB能形成等腰三角形?

3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD(AB<AD).

(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;
①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;
②作∠DAE的平分线交CD于点F;
③连接EF;
(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰RtABC中,∠ACB90°ACBC,点DE分别在边ABCB上,CDDE,∠CDB=∠DEC,过点CCFDE于点F,交AB于点G

1)求证:△ACD≌△BDE

2)求证:△CDG为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.
(1)求证:△AGE≌△BGF;
(2)试判断四边形AFBE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.

(1)求二次函数y=ax2+bx+4的表达式;
(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;
(3)连接OM,在(2)的结论下,求OM与AC的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2+bx+ca0)的图象经过点A12).

1)当b1c=﹣4时,求该二次函数的表达式;

2)已知点Mt15),Nt+15)在该二次函数的图象上,请直接写出t的取值范围;

3)当a1时,若该二次函数的图象与直线y3x1交于点PQ,将此抛物线在直线PQ下方的部分图象记为C

①试判断此抛物线的顶点是否一定在图象C上?若是,请证明;若不是,请举反例;

②已知点P关于抛物线对称轴的对称点为P′,若P′在图象C上,求b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,折叠长方形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与BD重合,得折痕DG,若AB=4BC=3,求AG的长.

查看答案和解析>>

同步练习册答案