精英家教网 > 初中数学 > 题目详情

【题目】某校决定组织学生开展校外拓展活动,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲乙两种大客车,它们的载客量和租金如下表所示.学校计划此次拓展活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.

客车

甲种

乙种

载客量/(人/辆)

30

42

/(元/辆)

300

400

1)参加此次拓展活动的老师有 人,参加此次拓展活动的学生有 人;

2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为 辆.

3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.

【答案】116284;(28;(3)共有3种租车方案:方案一:租用甲种客车3,乙种客车5,租车费用为2900;方案二:租用甲种客车2辆,乙种客车6,租车费用为3000;方案三:租用甲种客车1辆,乙种客车7,租车费用为3100;最节省费用的租车方案是:租用甲种客车3,乙种客车5.

【解析】

(1)设老师有x,学生有y,根据若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生列出方程组 ,求解即可;

(2)每辆客车上至少要有2名老师,而老师的总数量是16 ,故汽车总数不能大于8;老师和学生一共300 ,要保证所有师生都有车坐,故汽车总数不能小于,综合起来可知汽车总数为8;

(3)设租用x辆乙种客车,则甲种客车数为: (8-x)辆,由租车总费用不超过3100,为使300名师生都有座,列出不等式组,求解得出其整数解即可得出答案.

1)解:设老师有x名,学生有y,

依题意,列方程组为

解得:

:老师有16,学生有284名.

2)因为每辆客车上至少要有2名老师,

所以汽车总数不能大于8;

又要保证300名师生有车坐,汽车总数不能小于 ( 取整为8 )辆,

综合起来可知汽车总数为8辆,

故答案为: 8;

3)解:设租用x辆乙种客车,则甲种客车数为: (8-x),

因为车总费用不超过3100,

所以400x+300(8-x)≤3100 ,

解得:x≤7,

为使300名师生都有座,

所以42x+30(8-x)≥300 ,

解得:x≥5,

所以5≤x≤7 ( x为整数)

所以共有3种租车方案:

方案一:租用甲种客车3,乙种客车5,租车费用为2900;

方案二:租用甲种客车2辆,乙种客车6,租车费用为3000;

方案三:租用甲种客车1辆,乙种客车7,租车费用为3100;

故最节省费用的租车方案是:租用甲种客车3,乙种客车5辆.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证. (以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)
请根据该图完成这个推论的证明过程.

证明:S矩形NFGD=S△ADC﹣(S△ANF+S△FGC),S矩形EBMF=S△ABC﹣(+).
易知,S△ADC=S△ABC==
可得S矩形NFGD=S矩形EBMF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠A=∠C90°BE平分∠ABCDF平分∠CDA

(1)求证:BEDF

(2)若∠ABC56°,求∠ADF的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,∠B=90°AB=8cmBC=6cmPQ分别为ABBC边上的动点,点P从点A开始沿AB方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.

1)出发2秒后,求PQ的长;

2)从出发几秒钟后,△PQB能形成等腰三角形?

3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点分别在轴、轴的正半轴上,,将绕点按顺时针方向旋转得到,使所在直线经过点,则直线的解析式为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD(AB<AD).

(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;
①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;
②作∠DAE的平分线交CD于点F;
③连接EF;
(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰RtABC中,∠ACB90°ACBC,点DE分别在边ABCB上,CDDE,∠CDB=∠DEC,过点CCFDE于点F,交AB于点G

1)求证:△ACD≌△BDE

2)求证:△CDG为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.

(1)求二次函数y=ax2+bx+4的表达式;
(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;
(3)连接OM,在(2)的结论下,求OM与AC的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应学雷锋、树新风、做文明中学生号召,某校开展了志愿者服务活动,活动项目有戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.

(1)被随机抽取的学生共有多少名?

(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;

(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?

查看答案和解析>>

同步练习册答案