精英家教网 > 初中数学 > 题目详情

【题目】已知∠AOB45°,点P在∠AOB的内部.P′P关于OA对称,P"P关于OB对称,则OP′P"三点所构成的三角形是(

A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形

【答案】C

【解析】

本题关键是根据轴对称,得到相等的角,进行相加得到直角,再得到三条线段P'O=PO= P'O,从而得到是等腰直角三角形.

解:如下图所示,连结P'OPOP'O

P'P关于OA对称

∴∠P'OA=POA P'O=PO

同理∠P'OB=POB P'O=PO

POA+POB=AOB=45°

∴∠P'OA+P'OB=POA+POB=45°

∴∠P'OA+P'OB+POA+POB=45°+45°=90°

OP 'P'是直角三角形.

P'O=PO P'O=POP'O= P'O

OP'P'是等腰直角三角形.

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△A1B1C1是边长为1的等边三角形,A2为等边△A1B1C1的中心,连接A2B1并延长到点B2 , 使A2B1=B1B2 , 以A2B2为边作等边△A2B2C2 , A3为等边△A2B2C2的中心,连接A3B2并延长到点B3 , 使A3B2=B2B3 , 以A3B3为边作等边△A3B3C3 , 依次作下去得到等边△AnBnCn , 则等边△A6B6C6的边长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AD=AB,BAD的平分线交BC于点E,DHAE于点H,连接BH并延长交CD于点F,连接DEBF于点O,下列结论:①∠AED=CED;OE=OD;BH=HF;BC﹣CF=2HE;AB=HF,其中正确的有(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图1菱形ABCD,∠ABC=60°,边长为 3,在菱形内作等边三角形△AEF,边长为2 ,点E,点F,分别在AB,AC上,以A为旋转中心将△AEF顺时针转动,旋转角为α,如图2

(1)在图2中证明BE=CF;
(2)若∠BAE=45°,求CF的长度;
(3)当CF= 时,直接写出旋转角α的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.

(1)求证:BE=CD;

(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是( )

A.10 海里
B.10 海里
C.10 海里
D.20 海里

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为(元),在乙采摘园所需总费用为(元),图中折线OAB表示与x之间的函数关系.

(1)甲、乙两采摘园优惠前的草莓销售价格是每千克 元;

(2)求与x的函数表达式;

(3)在图中画出与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ACB中,C为直角顶点,∠ABC=25°,O为斜边AB的中点,将OA绕着点O逆时针旋转α(0°<α<180°)到OP.当△BCP为等腰三角形时,α的度数为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】最近,“校园安全”受到全社会的广泛关注,重庆八中对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如下两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:

(1)扇形统计图中“基本了解”部分所对应扇形的圆心角为度;请补全条形统计图
(2)若达到“了解”程度的人中有1名男生2名女生,达到“不了解”的程度的人中有1名男生和1名女生,若分别从达到“了解”程度和“不了解”的人中分别抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

同步练习册答案