精英家教网 > 初中数学 > 题目详情

【题目】如图,△A1B1C1是边长为1的等边三角形,A2为等边△A1B1C1的中心,连接A2B1并延长到点B2 , 使A2B1=B1B2 , 以A2B2为边作等边△A2B2C2 , A3为等边△A2B2C2的中心,连接A3B2并延长到点B3 , 使A3B2=B2B3 , 以A3B3为边作等边△A3B3C3 , 依次作下去得到等边△AnBnCn , 则等边△A6B6C6的边长为

【答案】
【解析】解:作A2D1⊥A1B1于D1,A3D2⊥A2B2于D2,如图,

∵△A1B1C1是边长为1的等边三角形,A2为等边△A1B1C1的中心,

∴∠A2B1D1=30°,B1D1= A1B1=

∴cos∠A2B1D1=cos30°= =

∴A2B1=

∵A2B1=B1B2

∴A2B2=

同理可得∠A3B2D2=30°,B2D2= A2B2= × =

∴cos∠A3B2D2=cos30°= =

∴A3B2=

∵A3B2=B2B3

∴A3B3= =( 2

同理可得A4B4=( 3

A5B5=( 4.A6B6C=( 5=

故答案为

作A2D1⊥A1B1于D1,A3D2⊥A2B2于D2,根据等边三角形的中心的性质得∠A2B1D1=30°,B1D1= A1B1= ,利用余弦的定义得cos∠A2B1D1=cos30°= = ,可计算出A2B1= ,由A2B1=B1B2得到A2B2= ,用同样的方法可计算出A3B3=( 2,特殊的结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我国古代数学著作《九章算术》中有这样一道题,原文是:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步(两人的步长相同).走路慢的人先走100步,走路快的人要走多少步才能追上走路慢的人(两人走的路线相同)?试求解这个问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,ABAC12厘米,BC8厘米,点DAB的中点,如果点M在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点N在线段CA上由C点向A点运动,若使△BDM与△CMN全等,则点N的运动速度应为_____厘米/秒.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知A( ,y1),B(2,y2)为反比例函数y= 图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是( )

A.( ,0)
B.(1,0)
C.( ,0)
D.( ,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的布袋里装有4个球,其中2个红球,2个白球,它们除颜色外其余都相同.
(1)摸出1个球是白球的概率是
(2)同时摸两个球恰好是两个红球的概率(要求画树状图或列表).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,要判定AB∥CD,需要哪些条件?根据是什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.

1)求原计划每天生产的零件个数和规定的天数.

2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图两直线ABCD相交于点OOE平分BOD,∠AOC∶∠AOD=7∶11.

(1)COE的度数

(2)OFOECOF的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠AOB45°,点P在∠AOB的内部.P′P关于OA对称,P"P关于OB对称,则OP′P"三点所构成的三角形是(

A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

同步练习册答案