精英家教网 > 初中数学 > 题目详情

【题目】一个不透明的布袋里装有4个球,其中2个红球,2个白球,它们除颜色外其余都相同.
(1)摸出1个球是白球的概率是
(2)同时摸两个球恰好是两个红球的概率(要求画树状图或列表).

【答案】
(1)
(2)解:画树状图得:

∵共有12种等可能的结果,同时摸两个球恰好是两个红球的有2种情况,

∴同时摸两个球恰好是两个红球的概率为:


【解析】解:(1)∵布袋里装有4个球,其中2个白球,
∴摸出1个球是白球的概率为:=.
所以答案是:.
【考点精析】利用列表法与树状图法和概率公式对题目进行判断即可得到答案,需要熟知当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率;一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=m/n.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线ab都与直线c相交,给出下列条件:①∠1∠2②∠3∠6③∠4+∠7180°④∠5+∠8180°.其中能判断a∥b的条件是(

A.①③B.②④C.①③④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC 中,∠C90°,沿过点A的一条直线AE折叠RtABC,使点C恰好落在AB边的中点D处,则∠B的度数是( )

A. 25° B. 30° C. 40° D. 45°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等腰△ABC中,已知ABACBDACD

(1)若∠A48°,求∠CBD的度数;

(2)BC15BD12,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知两个等腰直角△ABC和△CDE,它们的两个直角顶点BD在直线MN上,过点AE分别作AGMNEFMN,垂足分别为GF

(1)如图1,当△ABC和△CDE在△BCD的外部时,请你探索线段EFDBAG之间的数量关系,其数量关系为______

(2)如图2,将图1中的△ABC沿BC翻折,其他条件不变,那么(1)中的结论是否仍然成立?若成立,请你给出证明,若不成立,请探索它们的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△A1B1C1是边长为1的等边三角形,A2为等边△A1B1C1的中心,连接A2B1并延长到点B2 , 使A2B1=B1B2 , 以A2B2为边作等边△A2B2C2 , A3为等边△A2B2C2的中心,连接A3B2并延长到点B3 , 使A3B2=B2B3 , 以A3B3为边作等边△A3B3C3 , 依次作下去得到等边△AnBnCn , 则等边△A6B6C6的边长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(定义)数学课上,陈老师对我们说,如果1条线段将一个三角形分成2个等腰三角形,那么这1条线段就称为这个三角形的“好线”,如果2条线段将一个三角形分成3个等腰三角形,那么这2条线段就称为这个三角形的“好好线”.

(理解)如图,在△ABC中,∠A36°,∠C72°,请你在这个三角形中画出它的“好线”,并标出等腰三角形顶角的度数.

如图,已知△ABC是一个顶角为45°的等腰三角形,请你在这个三角形中画出它的“好好线”,并标出所分得的等腰三角形底角的度数.

(应用)

(1)在△ABC中,已知一个内角为42°,若它只有“好线”,请你写出这个三角形最大内角的所有可能值______

(2)在△ABC中,∠C27°,ADDE分别是△ABC的“好好线”,点DBC边上,点EAB边上,且ADDCBEDE,请你根据题意画出示意图,并求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.
(1)求证:BD是⊙O的切线;
(2)求证:CE2=EHEA;
(3)若⊙O的半径为 ,sinA= ,求BH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.

(1)求证:BE=CD;

(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.

查看答案和解析>>

同步练习册答案