【题目】已知两个等腰直角△ABC和△CDE,它们的两个直角顶点B、D在直线MN上,过点A、E分别作AG⊥MN,EF⊥MN,垂足分别为G、F.
(1)如图1,当△ABC和△CDE在△BCD的外部时,请你探索线段EF、DB、AG之间的数量关系,其数量关系为______.
(2)如图2,将图1中的△ABC沿BC翻折,其他条件不变,那么(1)中的结论是否仍然成立?若成立,请你给出证明,若不成立,请探索它们的数量关系,并说明理由.
【答案】(1)BD=EF+AG;(2)成立,证明见解析.
【解析】
(1)结论:BD=EF+AG.只要证明△FDE≌△HCD(AAS),可得EF=DH,同理可证:△BHC≌△AGB,可得AG=BH,即可解决问题;
(2)结论不变,证明方法类似;
解:(1)结论:BD=EF+AG.
理由:如图1中,作CH⊥MN于H.
∵EF⊥MN,AG⊥MN,
∴∠EFD=∠EDC=∠CHD=90°,
∴∠EDF+∠CDH=90°,∠CDH+∠DCH=90°,
∴∠EDF=∠DCH,
∵DE=DC,
∴△FDE≌△HCD(AAS),
∴EF=DH,
同理可证:△BHC≌△AGB,
∴AG=BH,
∴BD=EF+AG.
故答案为BD=EF+AG.
(2)结论成立.
理由:如图2中,作CH⊥MN于H.
∵EF⊥MN,AG⊥MN,
∴∠EFD=∠EDC=∠CHD=90°,
∴∠EDF+∠CDH=90°,∠CDH+∠DCH=90°,
∴∠EDF=∠DCH,
∵DE=DC,
∴△FDE≌△HCD(AAS),
∴EF=DH,
同理可证:△BHC≌△AGB,
∴AG=BH,
∴BD=EF+AG.
故答案为BD=EF+AG.
科目:初中数学 来源: 题型:
【题目】如图,已知点A的坐标是(﹣1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线.
(1)求点C的坐标及抛物线的解析式;
(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,求点D的坐标;并直接写出直线BC、直线BD的解析式;
(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD,若存在,请求出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班在一次班会课上,就“遇见路人摔倒后如何处理”的主题进行讨论,并对全班 50 名学生的处理方式进行统计,得出相关统计表和统计图.
组别 | A | B | C | D |
处理方式 | 迅速离开 | 马上救助 | 视情况而定 | 只看热闹 |
人数 | m | 30 | n | 5 |
请根据表图所提供的信息回答下列问题:
(1)统计表中的 m= ,n= ;
(2)补全频数分布直方图;
(3)若该校有 2000 名学生,请据此估计该校学生采取“马上救助”方式的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠A=30°,AB=5,点P是AC上的动点,连接BP,以BP为边作等边△BPQ,连接CQ,则点P在运动过程中,线段CQ长度的最小值是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=的图象经过点(﹣1,-2),点A是该图象第一象限分支上的动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角三角形ABC,顶点C在第四象限,AC与x轴交于点D,当=时,则点C的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的布袋里装有4个球,其中2个红球,2个白球,它们除颜色外其余都相同.
(1)摸出1个球是白球的概率是;
(2)同时摸两个球恰好是两个红球的概率(要求画树状图或列表).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB∥CD,EF分别交AB、CD于G、F两点,射线FM平分∠EFD,将射线FM平移,使得端点F与点G重合且得到射线GN.若∠EFC=110°,则∠AGN的度数是( )
A. 120° B. 125° C. 135° D. 145°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2) 如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1).
(1)继续填写:A6(________,________),A7(________,________),A8(________,________),A9((________,________).A10((________,________),A11(________,________),A12(________,________),A13(________,________).
(2)写出点A2010(________,________),A2011(________,________).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com