精英家教网 > 初中数学 > 题目详情

作业宝如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(-1,0).将矩形OABC绕原点O顺时针方向旋转90°,得到矩形OA′B′C′.设直线BB′与x轴交于点M、与y轴交于点N,抛物线经过点C、M、N.解答下列问题:
(1)求直线BB′的函数解析式;
(2)求抛物线的解析式;
(3)在抛物线上求出使数学公式的所有点P的坐标.

解:(1)∵四边形OABC是矩形,
∴B(-1,3)
根据题意,得B′(3,1)
把B(-1,3),B′(3,1)代入y=mx+n中,
解得
∴y=-

(2)由(1)得,N(0,),M(5,0),
设二次函数解析式为y=ax2+bx+c,把C(-1,0),M(5,0),N(0,)代入得

解得
∴二次函数解析式为y=x2+2x+

(3)∵S矩形OABC=3×1=3,

又∵B′C′=3,
∵B′(3,1),
∴点P到B′C′的距离为9,则P点的纵坐标为10或-8.
∵抛物线的顶点坐标为(2,),
∴P的纵坐标是10,不符合题意,舍去,
∴P的纵坐标是-8,
当y=-8时,-8=x2+2x+
即x2-4x-21=0,
解得x1=-3,x2=7,
∴P1(-3,-8),P2(7,-8),
∴满足条件的点P的坐标是(-3,-8)和(7,-8).
分析:(1)根据四边形OABC是矩形可知B(-1,3).根据旋转的性质,得B′(3,1).
把B(-1,3),B′(3,1)代入y=mx+n中,利用待定系数法可解得y=-
(2)由(1)得,N(0,),M(5,0).设二次函数解析式为y=ax2+bx+c,把C(-1,0),M(5,0),N(0,)代入得,利用待定系数法解得二次函数解析式为y=x2+2x+
(3)根据矩形的面积公式可知S矩形OABC=3×1=3,则.易求得抛物线的顶点坐标为(2,),P的纵坐标是-8.当y=-8时代入二次函数解析式得-8=x2+2x+,即x2-4x-21=0.解得x1=-3,x2=7.则P1(-3,-8),P2(7,-8).所以满足条件的点P的坐标是(-3,-8)和(7,-8).
点评:本题考查二次函数的综合应用,其中涉及到的知识点有待定系数法求函数解析式和函数图象上点的意义,矩形的性质与面积,函数和方程之间的关系等.要熟练掌握才能灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案