精英家教网 > 初中数学 > 题目详情

如图,∠C=90°,∠DBC=30°,AB=BD=2,利用此图求tan75°和tan15°.

解:∵BA=BD=2,∠DBC=30°,∠C=90°,
∴在△ABD中,∠A=∠ADB=15°,
在Rt△DBC中,∠DBC=30°,DB=2,
则BC=,DC=1,
在Rt△ADC中,AC=2+,DC=1,
tan∠ADC=tan75°==2+
tan∠A=tan15°====2-
tan75°=,tan15°=
分析:根据∠DBC=30°,AB=BD=2,可得∠A=∠ADB=15°,在Rt△DCB中,可得∠BDC=60°,故∠ADC=75°,求tan75°和tan15°的值可转化为求直角三角形的角.
点评:本题的关键是找出所求的角所在的直角三角形,然后在直角三角形中求解使问题变得简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,∠BAC=90°,AD⊥BC,△ABE,△ACF都是等边三角形,则S△ABE:S△ACF等于(  )
A、AB:ACB、AD2:DC2C、BD2:DC2D、AC2:AB2

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,∠AOB=90°,∠B=30°,△AOB′可以看作是由△AOB绕点O顺时针旋转α角度得到的,若点A′在AB上,则旋转角α的大小可以是
60
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图,∠C=90°,AD平分∠CAB,DE⊥AB于E,若DB=2DE=6cm,则BC=
9
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,∠C=90°,⊙C与AB相交于点D,AC=5,CB=12,求AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠AOB=90°,0C⊥OD,且∠BOC=
23
∠AOC,求∠BOD,∠AOD的度数.

查看答案和解析>>

同步练习册答案