【题目】(1)观察图形:
如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F.
①写出图1中所有的全等三角形_________________;
②线段AF与线段CE的数量关系是_________________;
(2)问题探究:
如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC交于点E.
求证:AE=2CD.
(3)拓展延伸:
如图3,△ABC中,∠BAC=45°,AB=BC,点D在AC上,∠EDC=∠BAC,DE⊥CE,垂足为E,DE与BC交于点F.
求证:DF=2CE.
【答案】(1)①△ABE≌△ACE,△ADF≌△CDB;②AF=2CE;(2)答案见解析;(3)答案见解析
【解析】
试题观察图形:①由全等三角形的判定方法容易得出结果;
②由全等三角形的性质即可得出结论;
问题探究:延长交于点,由ASA证明≌,得出对应边相等 即 证出 由ASA证明≌得出即可.
拓展延伸:作DG⊥BC于点H,交CE的延长线于G,同上证明三角形全等,得出即可.
试题解析:
(1)观察图形:
①△ABE≌△ACE,△ADF≌△CDB;
②AF=2CE;
(2)问题探究:
证明:延长AB、CD交于点G,如图2所示:
∵AD平分∠BAC,
∴∠CAD=∠GAD,
∵AD⊥CD,
∴∠ADC=∠ADG=90°,
在△ADC和△ADG中,
,
∴△ADC≌△ADG(ASA),
∴CD=GD,
即CG=2CD,
∵∠BAC=45°,AB=BC,
∴∠ABC=90°,
∴∠CBG=90°,
∴∠G+∠BCG=90°,
∵∠G+∠BAE=90°,
∴∠BAE=∠BCG,
在△ABE和△CBG中,
∴△ADC≌△CBG(ASA),
∴AE=CG=2CD.
(3)拓展延伸:
证明:作DG⊥BC于点H,交CE的延长线于G,
∵∠BAC=45°,AB=BC,
∴AB⊥BC,
∴DG∥AB,
∴∠GDC=∠BAC=45°,
∴∠EDC=∠BAC=22.5°=∠EDG,DH=CH,
又∵DE⊥CE,
∴∠DEC=∠DEG=90°,
在△DEC和△DEG中,
∴△DEC≌△DEG(ASA),
∴DC=DG,CG=2CE,
∵∠DHF=∠CEF=90°,∠DFH=∠CFE,
∴∠FDH=∠GCH,
在△DHF和△CHG中,
∴△DHF≌△CHG(ASA),
∴DF=CG=2CE.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△DBE中,BC=BE,还需再添加两个条件才能使△ABC≌△DBE,则不能添加的一组条件是( )
A. AB=DB,∠ A=∠ D B. DB=AB,AC=DE C. AC=DE,∠C=∠E D. ∠ C=∠ E,∠ A=∠ D
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C,E是直线l两侧的点,以C为圆心,CE长为半径画弧交l于A,B两点,又分别以A,B为圆心,大于 AB的长为半径画弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是( )
A.CD⊥l
B.点A,B关于直线CD对称
C.点C,D关于直线l对称
D.CD平分∠ACB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+2ax+c交x轴于A,B两点,交y轴于点C(0,3),tan∠OAC= .
(1)求抛物线的解析式;
(2)点H是线段AC上任意一点,过H作直线HN⊥x轴于点N,交抛物线于点P,求线段PH的最大值;
(3)点M是抛物线上任意一点,连接CM,以CM为边作正方形CMEF,是否存在点M使点E恰好落在对称轴上?若存在,请求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是( )
A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1(注:与图2完全相同),二次函数y= x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.
(1)求该二次函数的解析式;
(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);
(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com