【题目】如图,直线l1的解析表达式为y=-x-1,且l1与x轴交于点D,直线l2经过定点A(2,0),B(-1,3),直线l1与l2交于点C.
(1)求直线l2的函数关系式;
(2)求△ADC的面积;
(3)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请写出点P的坐标.
【答案】(1)l2的函数关系式为:y=-x+2;(2)8;(3)P点坐标为:(-2,4).
【解析】
试题(1)设l2的函数关系式为:y=kx+b,再把A(2,0),B(-1,3)代入可得关于k、b的方程组,再解方程组即可得到k、b的值,进而可得函数解析式;
(2)联立l1和l2的解析式,再解方程组可得C点坐标,再利用直线l1的解析式计算出D点坐标,进而可得△ADC的面积;
(3)根据△ADP与△ADC的面积相等可得△ADP的面积为8,再由AD=4,计算出P点纵坐标,再利用l2的解析式确定横坐标,进而可得答案.
试题解析:(1)设l2的函数关系式为:y=kx+b,
∵直线过A(2,0),B(-1,3),
∴,解得:,
∴l2的函数关系式为:y=-x+2;
(2)∵l1的解析表达式为y=-x-1,
∴D点坐标是(-2,0),
∵直线l1与l2交于点C.
∴,解得,
∴C(6,-4),
△ADC的面积为:×AD×4=×4×4=8;
(3)∵△ADP与△ADC的面积相等,
∴△ADP的面积为8,
∵AD长是4,
∴P点纵坐标是4,
再根据P在l2上,则4=-x+2,解得:x=-2,
故P点坐标为:(-2,4).
科目:初中数学 来源: 题型:
【题目】已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE,过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+.其中正确结论的序号是( )
A. ①②③ B. ①②④ C. ②③④ D. ①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.
(1)求证:CM=CN;
(2)若△CMN的面积与△CDN的面积比为3:1,且CD=4,求线段MN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)的顶点A、C的坐标分别为(-4,3)、(-1,1).
(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)请作出关于y对称的△A′B′C′;
(3)写出点的坐标 ;的面积为 .
(4)若在y轴上有点M,则能使△ABM的周长最小的点M的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,△ABC是等边三角形,D点是AC的中点,延长BC到E,使CE=CD.
(1)用尺规作图的方法,过D点作DM⊥BE,垂足是M(不写作法,保留作图痕迹);
(2)求证:BM=EM.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市积极开展“阳光体育进校园”活动,各校学生坚持每天锻炼一小时,某校根据实际,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳四种运动项目,为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题.
(1)请计算最喜欢B项目的人数所占的百分比.
(2)请计算D项所在扇形图中的圆心角的度数.
(3)请把统计图补充完整.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,四边形 ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.
(1)求证:BD⊥CB;
(2)求四边形 ABCD 的面积;
(3)如图 2,以 A 为坐标原点,以 AB、AD所在直线为 x轴、y轴建立直角坐标系,
点P在y轴上,若 S△PBD=S四边形ABCD,求 P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com