精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线交于点,过点轴的平行线,分别交两条抛物线于点,则以下结论:①无论取何值,的值总是正数;;③其中正确结论是( )

A. ①②B. ①③C. ②③D. 都正确

【答案】B

【解析】

利用二次函数的性质得到y2的最小值为1,则可对①进行判断;把A点坐标代入y1=ax+22-3中求出a,则可对②进行判断;利用抛物线的对称性计算出ABAC,则可对③进行判断.

解:∵y2=+1
y2的最小值为1,所以①正确;
A13)代入y1=a(x+2)2-3a(1+2)2-3=3
3a=2,所以②错误;
抛物线y1=a (x+2)2-3的对称轴为直线x=-2,抛物线y2=+1

的对称轴为直线x=3
AB=2×3=6AC=2×2=4
2AB=3AC,所以③正确.
故答案为①③.故选择B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数ykx2﹣(k+3x+3图象的对称轴为:直线x2

1)求该二次函数的表达式;

2)画出该函数的图象,并结合图象直接写出:

y0时,自变量x的取值范围;

0x3时,y的取值范围是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的顶点A,C分别在x轴,y轴上,顶点B在第一象限,AB=1.将线段OA绕点O按逆时针方向旋转60°得到线段OP,连接AP,反比例函数(k≠0)的图象经过P,B两点,则k的值为______________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知三个顶点的坐标分别.

1)画出

(2)以B为位似中心,将放大到原来的2倍,在右图的网格图中画出放大后的图形△

(3)写出点A的对应点的坐标:___.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的直径AB12 cmCAB延长线上一点,CD与⊙O相切于点D,过点B作弦BECD,连接DE

1)求证:点D的中点;

2)若∠C=∠E,求四边形BCDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果关于x的一元二次方程ax2+bx+c=0 (a≠0)有两个不相等的实数根,且其中一个根为另一个根的2,那么称这样的方程为倍根方程”.例如,方程x2-6x+8=0的两个根是24,则方程x2-6x+8=0就是倍根方程”.

(1)若一元二次方程x2-3x+c=0倍根方程”,c=

(2)(x-2) (mx-n)=0(m≠0)倍根方程”,求代数式4m2-5mn+n2的值;

(3)若方程ax2+bx+c=0 (a≠0)是倍根方程,且相异两点M(1+t,s),N(4-t,s),都在抛物线y=ax2+bx+c上,求一元二次方程ax2+bx+c=0 (a≠0)的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】周老师家的红心猕猴桃深受广大顾客的喜爱,猕猴桃成熟上市后,她记录了15天的销售数量和销售单价,其中销售单价y(元/千克)与时间第x天(x为整数)的数量关系如图所示,日销量P(千克)与时间第x天(x为整数)的部分对应值如下表所示:

时间第x

1

3

5

7

10

11

12

15

日销量P(千克)

320

360

400

440

500

400

300

0

1)求yx的函数关系式,并写出自变量x的取值范围;

2)从你学过的函数中,选择合适的函数类型刻画Px的变化规律,请直接写出Px的函数关系式及自变量x的取值范围;

3)在这15天中,哪一天销售额达到最大,最大销售额是多少元;

4)周老师非常热爱公益事业,若在前5天,周老师决定每销售1千克红心猕猴桃就捐献a元给环保公益项目,且希望每天的销售额不低于2800元以维持各种开支,求a的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的网格是正方形网格,线段AB绕点A顺时针旋转αα180°)后与⊙O相切,则α的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABACADBC垂足是DAN是∠BAC的外角∠CAM的平分线,CEAN,垂足是E,连接DEACF

1)求证:四边形ADCE为矩形;

2)求证:DFABDF

3)当△ABC满足什么条件时,四边形ADCE为正方形,简述你的理由.

查看答案和解析>>

同步练习册答案