【题目】如图,⊙O的直径AB=12 cm,C为AB延长线上一点,CD与⊙O相切于点D,过点B作弦BE∥CD,连接DE.
(1)求证:点D为的中点;
(2)若∠C=∠E,求四边形BCDE的面积.
【答案】(1)见解析 (2)
【解析】
(1)连接OD,由CD与圆O切线,得到OD与CD垂直,根据BE与DC平行,得到OD与BE垂直,进而得到D为弧BE的中点即可;
(2)连接OE,由BE与CD平行,得到一对同位角相等,再由已知角相等,等量代换得到一对内错角相等,进而得到BC与DE平行,即四边形BCDE为平行四边形,求出面积即可.
(1)证明:连接OD交BE于F,
∵CD与⊙O相切于点D,∴OD⊥DC,
∵BE∥CD,∴∠OFB=∠ODC=90°,
∴OD⊥BE,∴弧BD =弧DE,∴点D为弧BE的中点.
(2)解:连接OE.∵BE∥CD,∴∠C=∠ABE.
∵∠C=∠BED,∴∠ABE=∠BED,∴DE∥CB,
∴四边形BCDE是平行四边形.
∵∠ABE=∠BED,∴∠AOE=∠BOD,∴弧AE=弧BD.
∵弧BD=弧DE,∴弧BD=弧DE=弧AE,
∴∠BOD=∠DOE=∠AOE=60°.∴△DOE为等边三角形.
又∵OD⊥BE,∴DF=OF=OD=3,BF=EF.
在Rt△OEF中,EF===,BE=.
∴四边形BCDE的面积===.
科目:初中数学 来源: 题型:
【题目】如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.
(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将边长为8的正方形纸片ABCD沿着EF折叠,使点C落在AB边的中点M处.点D落在点D'处,MD'与AD交于点G,则△AMG的内切圆半径的长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(1,a)是反比例函数的图象上一点,直线与反比例函数的图象的交点为点B、D,且B(3,﹣1),求:
(1)求反比例函数的解析式;
(2)求点D坐标,并直接写出y1>y2时x的取值范围;
(3)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与交于点,过点作轴的平行线,分别交两条抛物线于点,则以下结论:①无论取何值,的值总是正数;②;③其中正确结论是( )
A. ①②B. ①③C. ②③D. 都正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点,的坐标分别为,,抛物线的顶点在折线上运动.
(1)当点在线段上运动时,抛物线与轴交点坐标为.
①用含的代数式表示.
②求的取值范围.
(2)当抛物线与的边有三个公共点时,试求出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙P的直径,点在⊙P上,为⊙P外一点,且∠ADC=90°,直线为⊙P的切线.
⑴ 试说明:2∠B+∠DAB=180°
⑵ 若∠B=30°,AD=2,求⊙P的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.
其中正确的序号是 (把你认为正确的都填上).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com