【题目】如图,已知AB是⊙P的直径,点在⊙P上,为⊙P外一点,且∠ADC=90°,直线为⊙P的切线.
⑴ 试说明:2∠B+∠DAB=180°
⑵ 若∠B=30°,AD=2,求⊙P的半径.
【答案】(1)证明见解析;(2)4.
【解析】
(1)根据切线的性质和圆周角定理,以及平行线的性质即可得到结论;
(2)连接AC,易证△ACP是等边三角形,得到∠ACD=30°即可求出半径.
解:⑴ 连接CP
∵PC=PB,∴∠B=∠PCB,
∴∠APC=∠PCB+∠B=2∠B
∵CD是⊙OP的切线,∴∠DCP=90°
∵∠ADC=90°,∴∠DAB+∠APC=180°
∴2∠B+∠DAB=180°
⑵ 连接AC
∵∠B=30°,∴∠APC=60°,
∵PC=PA,∴△ACP是等边三角形,∴AC=PA,∠ACP=60°
∴∠ACD=30°,∴AC=2AD=4,∴PA=4
答:⊙P的半径为4.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是( )
A.2015πB.3019.5πC.3018πD.3024π
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(1,a)是反比例函数的图象上一点,直线与反比例函数的图象的交点为点B、D,且B(3,﹣1),求:
(1)求反比例函数的解析式;
(2)求点D坐标,并直接写出y1>y2时x的取值范围;
(3)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点,的坐标分别为,,抛物线的顶点在折线上运动.
(1)当点在线段上运动时,抛物线与轴交点坐标为.
①用含的代数式表示.
②求的取值范围.
(2)当抛物线与的边有三个公共点时,试求出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.
(1)以直线BC为轴,把△ABC旋转一周,求所得圆锥的底面圆周长.
(2)以直线AC为轴,把△ABC旋转一周,求所得圆锥的侧面积;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙P的直径,点在⊙P上,为⊙P外一点,且∠ADC=90°,直线为⊙P的切线.
⑴ 试说明:2∠B+∠DAB=180°
⑵ 若∠B=30°,AD=2,求⊙P的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
在数学课上,老师提出利用尺规作图完成下面问题:
根据小芸设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明:
证明:连接OA,OB,OC,
由作图可知 OA=OB=OC( )(填推理的依据)
∴⊙O为△ABC的外接圆;
∵点C,P在⊙O上,
∴∠APB=∠ACB.( )(填推理的依据)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN.
(1)当MN∥B′D′时,求α的大小.
(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,BD为⊙O的直径,∠BAC=120°、OA⊥BC、若AB=4.
(1)求证:四边形OACD为菱形.
(2)求AD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com