精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.

(1)以直线BC为轴,把△ABC旋转一周,求所得圆锥的底面圆周长

(2)以直线AC为轴,把△ABC旋转一周,求所得圆锥的侧面积;

【答案】(1)12π;(2)80π.

【解析】

(1)以直线BC为轴,把ABC旋转一周,得到的圆锥底面半径为6,即可求出所得圆锥的底面圆周长.
(2)由于以直线AC为轴,把ABC旋转一周,得到的圆锥的展开图为扇形,扇形半径为10,扇形的弧长为2π×CB,然后根据扇形面积公式计算圆锥的侧面积;

(1) 2π×6=12π.

(2)∵∠C=90°,AC=6,BC=8,AB==10,

所以以直线AC为轴,把ABC旋转一周,得到的圆锥的侧面积=×10×2π×8=80π;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解方程:

(1)

(2)

(3)

(4) .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC和△ADE中,AB=AC,AD=AE,BAC+EAD=180°,ABC不动,△ADE绕点A旋转,连接BE,CD,FBE的中点,连接AF.

(1)如图①,当∠BAE=90°时,求证:CD=2AF;

(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AEBC,AFCD,垂足分别为E,F,且BE=DF.

(1)求证:ABCD是菱形;

(2)若AB=5,AC=6,求ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠FAB,BOC=60°,过点CCDAFAF的延长线于点D,垂足为点D.

(1)求扇形OBC的面积(结果保留π);

(2)求证:CD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图, , ,,,P是边BC上的一动点,过点PPEAB,垂足为E,延长PE至点Q,使PQ=PC, 联结交边AB于点.

1)求AD的长;

2)设,的面积为y, y关于x的函数解析式,并写出定义域;

3)过点C, 垂足为F, 联结PFQF, 试探索当点P在边BC的什么位置时,为等边三角形?请指出点P的位置并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在中,AB=4,是边上动点(点不与点重合),过点,交边于点.

1)求的大小;

2)若把沿着直线翻折得到,设

如图2,当点落在斜边上时,求的值;

如图3,当点落在外部时,相交于点,如果,写出的函数关系式以及定义域.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若等腰三角形一边上的高等于腰长的一半,则等腰三角形的底角为_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线轴相交于两点,与轴交于点为顶点.

求直线的解析式和顶点的坐标;

已知,点是直线下方的抛物线上一动点,作于点,当最大时,有一条长为的线段(点在点的左侧)在直线上移动,首尾顺次连接构成四边形,请求出四边形的周长最小时点的坐标;

如图,过点轴交直线于点,连接点是线段上一动点,将沿直线折叠至,是否存在点使得重叠部分的图形是直角三角形?若存在,请求出的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案