精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC和△ADE中,AB=AC,AD=AE,BAC+EAD=180°,ABC不动,△ADE绕点A旋转,连接BE,CD,FBE的中点,连接AF.

(1)如图①,当∠BAE=90°时,求证:CD=2AF;

(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.

【答案】(1)证明见解析;(2)当∠BAE≠90°时,(1)的结论仍成立理由见解析.

【解析】

1)因为AF是直角三角形ABE的中线所以BE=2AF然后通过△ABE≌△ACD即可求得.

2)延长EABCGAG上截取AH=AD证出△ABH≌△ACD从而证得BH=CD然后根据三角形的中位线等于底边的一半求得BH=2AF即可求得.

1)如图①

∵∠BAC+∠EAD=180°,BAE=90°,∴∠DAC=90°.

ABE与△ACD

∴△ABE≌△ACDSAS),CD=BE

∵在RtABEFBE的中点BE=2AFCD=2AF

2)成立理由如下

如图②延长EABCGAG上截取AH=AD

∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°.

∵∠EAB+∠BAH=180°,∴∠DAC=BAH

ABH与△ACD中,∵

∴△ABH≌△ACDSAS),

BH=DC

AD=AEAH=ADAE=AH

EF=FBBH=2AFCD=2AF

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某批彩色弹力球的质量检验结果如下表:

抽取的彩色弹力球数n

500

1000

1500

2000

2500

优等品频数m

471

946

1426

1898

2370

优等品频率

0.942

0.946

0.951

0.949

0.948

(1)请在图中完成这批彩色弹力球优等品频率的折线统计图

(2)这批彩色弹力球优等品概率的估计值大约是多少?(精确到0.01)

(3)从这批彩色弹力球中选择5个黄球、13个黑球、22个红球,它们除了颜色外都相同,将它们放入一个不透明的袋子中,求从袋子中摸出一个球是黄球的概率.

(4)现从第(3)问所说的袋子中取出若干个黑球,并放入相同数量的黄球,搅拌均匀,使从袋子中摸出一个黄球的概率为,求取出了多少个黑球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

小昊遇到这样一个问题:如图1,在ABC中,∠ACB=90°,BEAC边上的中线,点DBC边上,CD:BD=1:2,ADBE相交于点P,求的值.

小昊发现,过点AAFBC,交BE的延长线于点F,通过构造AEF,经过推理和计算能够使问题得到解决(如图2).请回答的值为 

参考小昊思考问题的方法,解决问题:

如图 3,在ABC中,∠ACB=90°,点DBC的延长线上,ADAC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3 .

(1)求的值;

(2)若CD=2,则BP=__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:

甲公司为基本工资+揽件提成,其中基本工资为70/日,每揽收一件提成2元;

乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.

如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:

(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;

(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的

揽件数,解决以下问题:

①估计甲公司各揽件员的日平均件数;

②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.

1)求yx之间的函数关系式;

2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?

3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在中的平分线,交于点的中点,连接并延长交的延长线于点,连接.

求证:(1

2为等腰三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形 ABCD 中,E BC 边中点.

)已知:如图,若 AE 平分BADAED=90°,点 F AD 上一点,AF=AB.求证:(1ABEAFE;(2AD=AB+CD

)已知:如图,若 AE 平分BADDE 平分ADCAED=120°,点 FG 均为 AD上的点,AF=ABGD=CD.求证:(1GEF 为等边三角形;(2AD=AB+ BC+CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.

(1)以直线BC为轴,把△ABC旋转一周,求所得圆锥的底面圆周长

(2)以直线AC为轴,把△ABC旋转一周,求所得圆锥的侧面积;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数与反比例函数的图象交于两点,

(1)求这两个函数表达式

(2)写出使反比例函数值大于一次函数值时的取值范围。

(3)△AOB的面积。

查看答案和解析>>

同步练习册答案