精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知△ABC是面积为
3
的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于
 
(结果保留根号).
分析:根据相似三角形面积比等于相似比的平方求得三角形ADE的面积,再根据求出其边长,可根据三角函数得出三角形面积.
解答:精英家教网解:∵△ABC∽△ADE,AB=2AD,
S△ADE
S△ABC
=
AD2
AB2

∵AB=2AD,S△ABC=
3

∴S△ADE=
3
4

如图,在△EAF中,过点F作FH⊥AE交AE于H,
则∠AFH=45°,∠EFH=30°,
∴AH=HF,
设AH=HF=x,则EH=xtan30°=
3
3
x.
又∵S△ADE=
3
4

作CM⊥AB交AB于M,
∵△ABC是面积为
3
的等边三角形,
1
2
×AB×CM=
3

∠BCM=30°,
AB=2k,BM=k,CM=
3
k,
∴k=1,AB=2,
∴AE=
1
2
AB=1,
∴x+
3
3
x=1,
解得x=
3
3+
3
=
3-
3
2

∴S△AEF=
1
2
×1×
3-
3
2
=
3-
3
4
点评:此题主要考查相似三角形的判定与性质和等边三角形的性质等知识点,解得此题的关键是根据相似三角形面积比等于相似比的平方求得三角形ADE的面积,然后问题可解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC是边长为4的正三角形,AB在x轴上,点C在第一象限,AC与y轴交于点D,点A精英家教网的坐标为(-1,0).
(1)写出B,C,D三点的坐标;
(2)若抛物线y=ax2+bx+c经过B,C,D三点,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC是等边三角形,AB交⊙O于点D,DE⊥AC于点E.
(1)求证:DE为⊙O的切线.
(2)已知DE=3,求:弧BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC是等边三角形,E是AC延长线上一点,选择一点D,使得△CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,
求证:△CMN是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄城区模拟)如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.
(1)求证:△BCE≌△FDC;
(2)判断四边形ABDF是怎样的四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•奉贤区二模)如图,已知△ABC是等边三角形,点D是BC延长线上的一个动点,以AD为边作等边△ADE,过点E作BC的平行线,分别交AB,AC的延长线于点F,G,联结BE.
(1)求证:△AEB≌△ADC;
(2)如果BC=CD,判断四边形BCGE的形状,并说明理由.

查看答案和解析>>

同步练习册答案