【题目】如图,对称轴为直线x=﹣2的抛物线y=x2+bx+c与x轴交于A(﹣5,0),B(1,0)两点,与y轴相交于点C.
(1)求抛物线的解析式,并求出顶点坐标.
(2)若点P在抛物线上,且S△POC=4S△BOC,求出点P的坐标.
【答案】(1)y=x2+4x-5,(-2,-9);(2)P1(4,27),P2(-4,-5)
【解析】
(1)把A、B两点坐标代入,根据待定系数法可求得抛物线解析式,进而可求出顶点坐标;
(2)根据S△POC=4S△BOC,可得P到OC的距离是OB的4倍,可得P点的横坐标,根据自变量与函数值的对应关系,进而得到点P的坐标.
解:(1)把A(-5,0),B(1,0)两点代入y=x2+bx+c得
,
解得:
∴抛物线解析式为y=x2+4x-5,
当x=-2时,y=(-2) 2+4×(-2)-5=-9
∴顶点坐标为(-2,-9);
(2)由S△POC=4S△BOC,得P到OC的距离是OB的4倍,
即P点的横坐标为4或-4,
当x=4时,y=42+4×4-5=27,P1(4,27)
当x=-4时,y=(-4) 2+4(-4)-5=-5即P2(-4,-5)
综上所述:P1(4,27), P2(-4,-5).
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在y轴,x轴上,点B的坐标为,直线分别交AB,BC于点M,N,,反比例函数图象经过点M,N.
(1)求反比例函数的表达式;
(2)根据图象,请直接写出不等式的解集________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,抛物线y=-x2+2x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则OP+AP的最小值为( ).
A. 3 B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=x2+bx+c的图象过点B(0,1)和C(4,3)两点,与x轴交于点D、点E,过点B和点C的直线与x轴交于点A.
(1)求二次函数的解析式;
(2)在x轴上有一动点P,随着点P的移动,存在点P使△PBC是直角三角形,请你求出点P的坐标;
(3)若动点P从A点出发,在x轴上沿x轴正方向以每秒2个单位的速度运动,同时动点Q也从A点出发,以每秒a个单位的速度沿射线AC运动,是否存在以A、P、Q为顶点的三角形与△ABD相似?若存在,直接写出a的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店购进某种茶壶、茶杯共200个进行销售,其中茶杯的数量是茶壶数量的5倍还多20个.销售方式有两种:(1)单个销售;(2)成套销售.相关信息如下表:
进价(元/个) | 单个售价(元/个) | 成套售价(元/套) | |
茶壶 | 24 | a | 55 |
茶杯 | 4 | a﹣30 | |
备注:(1)一个茶壶和和四个茶杯配成一套(如图); (2)利润=(售价﹣进价)×数量 |
(1)该商店购进茶壶和茶杯各有多少个?
(2)已知甲顾客花180元购买的茶壶数量与乙顾客花30元购买的茶杯数量相同.
①求表中a的值.
②当该商店还剩下20个茶壶和100个茶杯时,商店将这些茶壶和茶杯中的一部分按成套销售,其余按单个销售,这120个茶壶和茶杯全部售出后所得的利润为365元.问成套销售了多少套?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某药品生产基地共有5条生产线,每条生产线每月生产药品20万盒,该基地打算从第一个月开始到第五个月结束,对每条生产线进行升级改造.改造时,每个月只升级改造一条生产线,这条生产线当月停产,并于下个月投入生产,其他生产线则正常生产.经调查,每条生产线升级改造后,每月的产量会比原来提高20%.
(1)根据题意,完成下面问题:
①把下表补充完整(直接写在横线上):
月数 | 第1个月 | 第2个月 | 第3个月 | 第4个月 | 第5个月 | 第6个月 | … |
产量/万盒 |
|
|
| 92 | … | … | … |
②从第1个月进行升级改造后,第 个月的产量开始超过未升级改造时的产量;
(2)若该基地第x个月(1≤x≤5,且x是整数)的产量为y万盒,求y关于x的函数关系式;
(3)已知每条生产线的升级改造费是30万元,每盒药品可获利3元.设从第1个月开始升级改造后,生产药品所获总利润为W1万元;同时期内,不升级改造所获总利润为W2万元设至少到第n个月(n为正整数)时,W1大于W2,求n的值.(利润=获利﹣改造费)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)线段AC,AG,AH什么关系?请说明理由;
(3)设AE=m,
①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
②请直接写出使△CGH是等腰三角形的m值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com