【题目】学习了“展开与折叠”后,同学们了解了一些简单几何体的展开图,小明在家用剪刀剪一个如图(1)的长方体纸盒,但不小心多剪开了一条棱,得到图(2)中的纸片①和②,请解答下列问题:
(1)小明共剪开 条棱;
(2)现在小明想将剪断的纸片②拼接到纸片①上,构成该长方体纸盒的展开图,请你在①中画出纸片②的一种位置;
(3)请从A,B两题中任选一题作答.
A.若长方体纸盒的长,宽,高分别为m,m,n(单位:cm,m>n),求(2)中展开图的周长.
B.若长方体纸盒的长,宽,高分别是a,b,c(单位:cm,a>b>c),如图(3),画出它的展开图中周长最大时的展开图,并求出周长(用含a,b,c的式子表示)
【答案】(1)8(2)四种情况(3).A、①③的周长为6m+8n;②④的周长为8m+6n;B 、画图见解析,周长为2c+4b+8a.
【解析】试题分析:(1)根据平面图形得出剪开棱的条数;
(2)根据长方体的展开图的情况可知有四种情况;
(3)A、观察(2)中的展开图分别进行计算即可得;
B、展开平面图求周长的公式与展开的方式无关 所以无论怎么展开我们通过实践都可以得出以下结论:假设长,宽,高分别为x,y,z(x,y,为任意值)周长c=2x+4y+8z,
这个平面图的周长最大也就是当x最小,z最大.即c=2c+4b+8a,
这个平面图的周长最小也就是当x最大,z最小.即c=2a+4b+8c.
试题解析:(1)小明共剪了8条棱,
故答案为:8;
(2)如图,四种情况.
, ,;
(3)A、①、③的周长为6m+8n;②、④的周长为8m+6n;
B、展开图如图所示,
周长为:2c+4b+8a.
科目:初中数学 来源: 题型:
【题目】矩形纸片ABCD中,已知AD=8,AB=6,E是边BC上的点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图①,在ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:
(1)当t为何值时,PQ∥MN?
(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4?若存在,求出t的值;若不存在,请说明理由.
(4)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出的以下四个结论:①AE=CF; ②△EPF一定是等腰直角三角形; ③S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时始终有EF=AP。(点E不与A、B重合),上述结论中始终正确的有_____.(写序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.
(1)判断∠D是否是直角,并说明理由.
(2)求四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).
(1)在图中作出△ABC关于y轴对称的△A1B1C1.
(2)写出A1,B1,C1的坐标,A1 ;B1 ;C1 .(直接写出答案)
(3)△A1B1C1的面积为 .(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,在△ABC中,D,E,F是边BC上的三点,且∠1=∠2=∠3=∠4,以AE为角平分线的三角形有_________;
(2)如图,已知AE平分∠BAC,且∠1=∠2=∠4=15°,计算∠3的度数,并说明AE是△DAF的角平分线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知CD是经过∠BCA顶点C的一条直线,CA=CB.E、F分别是直线CD上两点,且∠BEC=∠CFA=∠.
(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面问题:
①如图1若∠BCA=90°,∠=90°、探索三条线段EF、BE、AF的数量关系并证明你的结论.
②如图2,若0°<∠BCA<180°, 请添加一个关于∠与∠BCA关系的条件___ ____使①中的结论仍然成立;
(2)如图3,若直线CD经过∠BCA的外部,∠=∠BCA,请写出三条线段EF、BE、AF的数量关系并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com