【题目】如图,在平面直角坐标系xOy中,抛物线y=x2+与y轴相交于点A,点B与点O关于点A对称
(1)填空:点B的坐标是 ;
(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;
(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.
【答案】(1)(0,);(2)点P在抛物线上,理由详见解析;(3)P点坐标为(,1).
【解析】试题分析:(1)由抛物线解析式可求得点A的坐标,再利用对称可求得B点坐标;(2)可先用k表示出C点坐标,过B作BD⊥l于点D,条件可知P点在x轴上方,设P点纵坐标为y,可表示出PD、PB的长,在Rt△PBD中,利用勾股定理可求得y,则可求出PB的长,此时可得出P点坐标,代入抛物线解析式可判断P点在抛物线上;(3)利用平行线和轴对称的性质可得到∠OBC=∠CBP=∠C′BP=60°,则可求得OC的长,代入抛物线解析式可求得P点坐标.
试题解析:(1)∵抛物线y=x2+与y轴相交于点A,
∴A(0,),
∵点B与点O关于点A对称,
∴BA=OA=,
∴OB=,即B点坐标为(0,),
故答案为:(0,);
(2)∵B点坐标为(0,),
∴直线解析式为y=kx+,令y=0可得kx+=0,解得x=﹣,
∴OC=﹣,
∵PB=PC,
∴点P只能在x轴上方,
如图1,过B作BD⊥l于点D,设PB=PC=m,
则BD=OC=﹣,CD=OB=,
∴PD=PC﹣CD=m﹣,
在Rt△PBD中,由勾股定理可得PB2=PD2+BD2,
即m2=(m﹣)2+(﹣)2,解得m=+,
∴PB=+,
∴P点坐标为(﹣,+),
当x=﹣时,代入抛物线解析式可得y=+,
∴点P在抛物线上;
(3)如图2,连接CC′,
∵l∥y轴,
∴∠OBC=∠PCB,
又PB=PC,
∴∠PCB=∠PBC,
∴∠PBC=∠OBC,
又C、C′关于BP对称,且C′在抛物线的对称轴上,即在y轴上,
∴∠PBC=∠PBC′,
∴∠OBC=∠CBP=∠C′BP=60°,
在Rt△OBC中,OB=,则BC=1
∴OC=,即P点的横坐标为,代入抛物线解析式可得y=()2+=1,
∴P点坐标为(,1).
科目:初中数学 来源: 题型:
【题目】某公司组织员工外出旅游甲、乙两家旅行社为了吸引更多的顾客,分别推出了旅游的团体优惠办法甲旅行社的优惠办法是:买4张全票,其余人按原价的五折收费;乙旅行社的优惠办法是:一律按原价的六折收费已知这两家旅行社的原价均为a元,且在旅行过程中的各种服务质量相同如果你是该公司的负责人,你会选择哪家旅行社.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在梯形ABCD中,AB∥DC,∠ABC=90°,∠A=45°,AB=30,BC=x,其中15<x<30.过点D作DE⊥AB于点E,将△ADE沿直线DE折叠,使点A落在点F处,DF交BC于点G.
(1)用含x的代数式表示BF的长.
(2)设四边形DEBG的面积为S,求S关于x的函数表达式.
(3)当x为何值时,S有最大值?并求出这个最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将二次函数y=x2的图象向上平移m(m>0)个单位再向右平移2个单位,则平移以后的二次函数的解析式为( )
A.y=(x+2)2﹣mB.y=(x+2)2+mC.y=(x+m)2+2D.y=(x﹣2)2+m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了了解九年级上学期期末考试数学成绩,从九年级学生中随机抽取了部分学生进行调查,并将所抽取的学生数学成绩(成绩均为整数)分为A、B、C、D、E五个等级,A:50.5~60.5,B:60.5~70.5,C:70.5~80.5,D:80.5~90.5,E:90.5~100.5,并绘制了如图所示的频数分布直方图和扇形统计图,请你根据统计图提供的信息解答下列问题:
(1)这次抽样调查共抽取了多少名学生?
(2)请把频数分布直方图补充完整;
(3)这次期末考试数学成绩的中位数落在哪个等级内?
(4)该校九年级有800名学生,若规定80分以上(不含80分)为良好,试估计九年级有多少名学生的数学成绩为良好?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在我国古代的房屋建筑中,窗棂是重要的组成部分,具有高度的艺术价值.下列窗棂的图案中,是中心对称图形但不是轴对称图形的是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com