精英家教网 > 初中数学 > 题目详情

【题目】6分)如图所示,将直尺摆放在三角板ABC上,使直尺与三角板的边分别交于点DEFG,量得∠CGD=42°

1)求∠CEF的度数;

2)将直尺向下平移,使直尺的边缘通过三角板的顶点B,交AC边于点H,如图所示.点HB在直尺上的读数分别为4134,求BC的长(结果保留两位小数).

(参考数据:sin42°≈067cos42°≈074tan42°≈090

【答案】1∠CEF=48°

2BC的长为696m

【解析】试题分析:(1)由DG//EF,可知要求∠CEF的度数,需求出∠CDG的度数,而在△CDG在,∠C=90°∠CGD42°,从而得解.

2)由已知可得CBH=42°,由三角函数即可得;

试题解析:(1∵ ∠CGD42°∠C90°∴ ∠CDG90°42°48°∵ DG∥EF∴∠CEF=∠CDG=48°

2HB的读数分别为4134∴HB=134-4=94∴BC=HBcos42°≈94×074≈696m),答:BC的长为696m

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线y=x+1x轴、y轴分别交于点A,B,抛物线y=ax2+bx-3a(a>0)经过点A将点B向右平移5个单位长度,得到点C.

(1)求点C的坐标;

(2)求抛物线的对称轴;

(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=x2+bx+cb,c为常数的图象经过点A3,1,点C0,4,顶点为点M,过点A作ABx轴,交y轴于点D,交该二次函数图象于点B,连结BC.

1求该二次函数的解析式及点M的坐标;

2若将该二次函数图象向下平移mm>0个单位,使平移后得到的二次函数图象的顶点落在ABC的内部不包括ABC的边界,求m的取值范围;

3点P是直线AC上的动点,若点P,点C,点M所构成的三角形与BCD相似,请直接写出所有点P的坐标直接写出结果,不必写解答过程

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为1的正方形ABCD绕点A顺时针旋转30°AB′C′D′的位置,则图中阴影部分的面积为(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】I△ABC的内心,AI的延长线交△ABC的外接圆于D,以D为圆心,DI为半径画弧,是否经过点B与点C?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋子中装有红、黄两种颜色的球共20个,每个球除颜色外完全相同.某学习兴趣小组做摸球实验,将球搅匀后从中随机摸出1个球,记下颜色后再放回袋中,不断重复.下表是活动进行中的部分统计数据.

摸球的次数n

100

150

200

500

800

1000

摸到红球的次数m

59

96

118

290

480

601

摸到红球的频率

0.59

0.58

0.60

0.601

(1)完成上表;

(2)“摸到红球的概率的估计值 (精确到0.1)

(3)试估算袋子中红球的个数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC,∠BAC=90°,ABACD为直线BC上一动点(点D不与BC重合),AD为直角边在AD右侧作等腰直角三角形ADE且∠DAE=90°,连接CE

(1)如图①,当点D在线段BC上时

BCCE的位置关系为   

BCCDCE之间的数量关系为   

(2)如图②,当点D在线段CB的延长线上时结论①,②是否仍然成立?若不成立请你写出正确结论并给予证明

(3)如图③,当点D在线段BC的延长线上时BCCDCE之间的数量关系为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,对角线AC=8,BD=6,点EF分别是边ABBC的中点,点PAC上运动,在运动过程中,存在PEPF的最小值,则这个最小值是(  )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5”、“B﹣﹣﹣6”、“C﹣﹣﹣7”、“D﹣﹣﹣8”、“E﹣﹣﹣9天及以上),并将得到的数据绘制成如下两幅不完整的统计图.

请根据以上的信息,回答下列问题:

(1)补全扇形统计图和条形统计图;

(2)所抽查学生参加社会实践活动天数的众数是   (选填:A、B、C、D、E);

(3)若该市七年级约有2000名学生,请你估计参加社会实践活动天数不少于7的学生大约有多少人?

查看答案和解析>>

同步练习册答案