17£®Èçͼ£¬ÒÑÖªÅ×ÎïÏßy=-x2+bx+cÓëxÖá½»ÓÚA£¨-1£¬0£©¡¢B£¨3£¬0£©Á½µã£¬ÓëyÖá½»ÓÚµãC£¬Å×ÎïÏߵĶԳÆÖáÓëÅ×ÎïÏß½»ÓÚµãP¡¢ÓëÖ±ÏßBCÏཻÓÚµãM£¬Á¬½ÓPB£®
£¨1£©Çó¸ÃÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÔÚ£¨1£©ÖÐλÓÚµÚÒ»ÏóÏÞÄÚµÄÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãD£¬Ê¹µÃ¡÷BCDµÄÃæ»ý×î´ó£¿Èô´æÔÚ£¬Çó³öDµã×ø±ê¼°¡÷BCDÃæ»ýµÄ×î´óÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÔÚ£¨1£©ÖеÄÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãQ£¬Ê¹µÃ¡÷QMBÓë¡÷PMBµÄÃæ»ýÏàµÈ£¿Èô´æÔÚ£¬Çó³öµãQµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©°ÑA£¨-1£¬0£©¡¢B£¨3£¬0£©Á½µã´úÈëy=-x2+bx+c¼´¿ÉÇó³öÅ×ÎïÏߵĽâÎöʽ£¬
£¨2£©ÉèD£¨t£¬-t2+2t+3£©£¬¹ýµãD×÷DH¡ÍxÖᣬ¸ù¾ÝS¡÷BCD=SÌÝÐÎOCDH+S¡÷BDH-S¡÷BOC=-$\frac{3}{2}$t2+$\frac{9}{2}$t£¬¼´¿ÉÇó³öDµã×ø±ê¼°¡÷BCDÃæ»ýµÄ×î´óÖµ£¬
£¨3£©Éè¹ýµãPÓëBCƽÐеÄÖ±ÏßÓëÅ×ÎïÏߵĽ»µãΪQ£¬¸ù¾ÝÖ±ÏßBCµÄ½âÎöʽΪy=-x+3£¬¹ýµãPÓëBCƽÐеÄÖ±ÏßΪy=-x+5£¬µÃQµÄ×ø±êΪ£¨2£¬3£©£¬¸ù¾ÝPMµÄ½âÎöʽΪ£ºx=1£¬Ö±ÏßBCµÄ½âÎöʽΪy=-x+3£¬µÃMµÄ×ø±êΪ£¨1£¬2£©£¬ÉèPMÓëxÖá½»ÓÚµãE£¬Çó³ö¹ýµãEÓëBCƽÐеÄÖ±ÏßΪy=-x+1£¬¸ù¾Ý$\left\{\begin{array}{l}{y=-x+1}\\{y=-{x}^{2}+2x+3}\end{array}\right.$µÃµãQµÄ×ø±êΪ£¨$\frac{3+\sqrt{17}}{2}$£¬-$\frac{1+\sqrt{17}}{2}$£©£¬£¨$\frac{3-\sqrt{17}}{2}$£¬-$\frac{1-\sqrt{17}}{2}$£©£®

½â´ð ½â£º£¨1£©ÓÉ$\left\{\begin{array}{l}{-1-b+c=0}\\{-9+3b+c=0}\end{array}\right.$µÃ$\left\{\begin{array}{l}{b=2}\\{c=3}\end{array}\right.$£¬ÔòÅ×ÎïÏߵĽâÎöʽΪy=-x2+2x+3£¬

£¨2£©ÉèD£¨t£¬-t2+2t+3£©£¬¹ýµãD×÷DH¡ÍxÖᣬ
ÔòS¡÷BCD=SÌÝÐÎOCDH+S¡÷BDH-S¡÷BOC=$\frac{1}{2}$£¨-t2+2t+3+3£©t+$\frac{1}{2}$£¨3-t£©£¨-t2+2t+3£©-$\frac{1}{2}$¡Á3¡Á3=-$\frac{3}{2}$t2+$\frac{9}{2}$t£¬
¡ß-$\frac{3}{2}$£¼0£¬
¡àµ±t=-$\frac{\frac{9}{2}}{2¡Á£¨-\frac{3}{2}£©}$=$\frac{3}{2}$ʱ£¬Dµã×ø±êÊÇ£¨$\frac{3}{2}$£¬$\frac{15}{4}$£©£¬¡÷BCDÃæ»ýµÄ×î´óÖµÊÇ$\frac{27}{8}$£»

£¨3£©Éè¹ýµãPÓëBCƽÐеÄÖ±ÏßÓëÅ×ÎïÏߵĽ»µãΪQ£¬
¡ßPµãµÄ×ø±êΪ£¨1£¬4£©£¬Ö±ÏßBCµÄ½âÎöʽΪy=-x+3£¬
¡à¹ýµãPÓëBCƽÐеÄÖ±ÏßΪy=-x+5£¬
ÓÉ$\left\{\begin{array}{l}{y=-x+5}\\{y=-{x}^{2}+2x+3}\end{array}\right.$µÃQµÄ×ø±êΪ£¨2£¬3£©£¬
¡ßPMµÄ½âÎöʽΪx=1£¬Ö±ÏßBCµÄ½âÎöʽΪy=-x+3£¬
¡àMµÄ×ø±êΪ£¨1£¬2£©£¬
ÉèPMÓëxÖá½»ÓÚµãE£¬
¡ßPM=EM=2£¬
¡à¹ýµãEÓëBCƽÐеÄÖ±ÏßΪy=-x+1£¬
ÓÉ$\left\{\begin{array}{l}{y=-x+1}\\{y=-{x}^{2}+2x+3}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=\frac{3+\sqrt{17}}{2}}\\{y=-\frac{1+\sqrt{17}}{2}}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=\frac{3-\sqrt{17}}{2}}\\{y=-\frac{1-\sqrt{17}}{2}}\end{array}\right.$£¬
¡àµãQµÄ×ø±êΪ£¨$\frac{3+\sqrt{17}}{2}$£¬-$\frac{1+\sqrt{17}}{2}$£©£¬£¨$\frac{3-\sqrt{17}}{2}$£¬-$\frac{1-\sqrt{17}}{2}$£©£¬
¡àʹµÃ¡÷QMBÓë¡÷PMBµÄÃæ»ýÏàµÈµÄµãQµÄ×ø±êΪ£¨2£¬3£©£¬£¨$\frac{3+\sqrt{17}}{2}$£¬-$\frac{1+\sqrt{17}}{2}$£©£¬£¨$\frac{3-\sqrt{17}}{2}$£¬-$\frac{1-\sqrt{17}}{2}$£©£®

µãÆÀ ´ËÌ⿼²éÁ˶þ´Îº¯Êý×ۺϣ¬Óõ½µÄ֪ʶµãÊǶþ´Îº¯ÊýµÄͼÏóÓëÐÔÖÊ¡¢Èý½ÇÐÎÌÝÐεÄÃæ»ý¡¢Ö±ÏßÓëÅ×ÎïÏߵĽ»µã£¬¹Ø¼üÊÇ×÷³ö¸¨ÖúÏߣ¬Çó³ö·ûºÏÌõ¼þµÄËùÓеãµÄ×ø±ê£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èçͼ£¬Ò»ËÒº£ÂÖλÓÚµÆËþPµÄ±±Æ«¶«55¡ã·½Ïò£¬¾àÀëµÆËþ2º£ÀïµÄµãA´¦£¬Èç¹ûº£ÂÖÑØÕýÄÏ·½Ïòº½Ðе½µÆËþµÄÕý¶«·½Ïò£¬º£ÂÖº½ÐеľàÀëAB³¤ÊÇ£¨¡¡¡¡£©
A£®2º£ÀïB£®2sin55¡ãº£ÀïC£®2cos55¡ãº£ÀïD£®2tan55¡ãº£Àï

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ1£¬ÔÚÁâÐÎABCDÖУ¬EÊÇCDÉϵÄÒ»µã£¬Á¬½ÓBE½»ACÓÚO£¬Á¬½ÓDO²¢ÑÓ³¤½»BCÓÚF£®
£¨1£©ÇóÖ¤£º¡÷FOC¡Õ¡÷EOC£®
£¨2£©½«´ËͼÖеÄAD¡¢BE·Ö±ðÑÓ³¤½»ÓÚµãN£¬×÷EM¡ÎBC½»CNÓÚM£¬ÔÙÁ¬½ÓFM¼´µÃµ½Í¼2£®
ÇóÖ¤£º¢Ù$\frac{CF}{CB}=\frac{BE}{BN}$£»¢ÚFD=FM£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ËıßÐÎABCOÊÇÁâÐΣ¬B¡¢OÔÚxÖḺ°ëÖáÉÏ£¬AO=$\sqrt{5}$£¬tan¡ÏAOB=$\frac{1}{2}$£¬Ò»´Îº¯Êýy=k1x+bµÄͼÏó¹ýA¡¢BÁ½µã£¬·´±ÈÀýº¯Êýy=$\frac{{k}_{2}}{x}$µÄͼÏó¹ýOAµÄÖеãD£®
£¨1£©ÇóÒ»´Îº¯ÊýºÍ·´±ÈÀýº¯ÊýµÄ±í´ïʽ£»
£¨2£©Æ½ÒÆÒ»´Îº¯Êýy=k1x+bµÄͼÏóµÃy=k1x+b1£¬µ±Ò»´Îº¯Êýy=k1x+b1µÄͼÏóÓë·´±ÈÀýº¯Êýy=$\frac{{k}_{2}}{x}$µÄͼÏóÎÞ½»µãʱ£¬Çób1µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬Ôڱ߳¤Îª2µÄÕý·½ÐÎABCDÖУ¬GÊÇADÑÓ³¤ÏßÉϵÄÒ»µã£¬ÇÒDG=AD£¬¶¯µãM´ÓAµã³ö·¢£¬ÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÑØ×ÅA¡úC¡úGµÄ·ÏßÏòGµãÔÈËÙÔ˶¯£¨M²»ÓëA£¬GÖØºÏ£©£¬ÉèÔ˶¯Ê±¼äΪtÃ룬Á¬½ÓBM²¢ÑÓ³¤AGÓÚN£®
£¨1£©ÊÇ·ñ´æÔÚµãM£¬Ê¹¡÷ABMΪµÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬·ÖÎöµãMµÄλÖã»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨2£©µ±µãNÔÚAD±ßÉÏʱ£¬ÈôBN¡ÍHN£¬NH½»¡ÏCDGµÄƽ·ÖÏßÓÚH£¬ÇóÖ¤£ºBN=HN£»
£¨3£©¹ýµãM·Ö±ð×÷AB£¬ADµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪE£¬F£¬¾ØÐÎAEMFÓë¡÷ACGÖØµþ²¿·ÖµÄÃæ»ýΪS£¬ÇóSµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®¾ÝÖйúÐÂÎÅÍø±¨µÀ£¬ÔÚ2014Äê11ÔÂ17ÈÕ¹«²¼µÄÈ«Çò³¬¼¶¼ÆËã»ú500Ç¿°ñµ¥ÖУ¬Öйú¹ú·À¿Æ¼¼´óѧÑÐÖÆµÄ¡°ÌìºÓ¡±¶þºÅ³¬¼¶¼ÆËã»ú£¬ÒÔ·åÖµ¼ÆËãËÙ¶ÈÿÃë5.49ÒÚÒڴΡ¢³ÖÐø¼ÆËãËÙ¶ÈÿÃë3.39ÒÚÒÚ´ÎË«¾«¶È¸¡µãÔËËãµÄÓÅÒìÐÔÄÜλ¾Ó°ñÊ×£¬µÚËÄ´ÎÕªµÃÈ«ÇòÔËÐÐËÙ¶È×î¿ìµÄ³¬¼¶¼ÆËã»ú¹ð¹Ú£®ÓÿÆÑ§¼ÇÊý·¨±íʾ¡°5.49ÒÚÒÚ¡±£¬¼Ç×÷£¨¡¡¡¡£©
A£®5.49¡Á1018B£®5.49¡Á1016C£®5.49¡Á1015D£®5.49¡Á1014

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®·Öʽ·½³Ì$\frac{1-x}{x-3}=\frac{1}{3-x}-2$µÄ½âΪx=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èçͼ£¬Ð¡»ªÕ¾ÔÚºÓ°¶ÉϵÄGµã£¬¿´¼ûºÓÀïÓÐһС´¬ÑØ´¹Ö±ÓÚ°¶±ßµÄ·½Ïò»®¹ýÀ´£®´Ëʱ£¬²âµÃС´¬CµÄ¸©½ÇÊÇ¡ÏFDC=30¡ã£¬ÈôС»ªµÄÑÛ¾¦ÓëµØÃæµÄ¾àÀëÊÇ1.6Ã×£¬BG=0.7Ã×£¬BGƽÐÐÓÚACËùÔÚµÄÖ±Ïߣ¬Ó­Ë®ÆÂi=4£º3£¬ÆÂ³¤AB=8Ã×£¬µãA¡¢B¡¢C¡¢D¡¢F¡¢GÔÚÍ¬Ò»Æ½ÃæÄÚ£¬Ôò´ËʱС´¬Cµ½°¶±ßµÄ¾àÀëCAµÄ³¤Îª8$\sqrt{3}$-5.5Ã×£®£¨½á¹û±£Áô¸ùºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖª$\frac{c}{4}=\frac{b}{5}=\frac{a}{6}$¡Ù0£¬Ôò$\frac{b+c}{a}$µÄֵΪ$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸