·ÖÎö £¨1£©°ÑA£¨-1£¬0£©¡¢B£¨3£¬0£©Á½µã´úÈëy=-x2+bx+c¼´¿ÉÇó³öÅ×ÎïÏߵĽâÎöʽ£¬
£¨2£©ÉèD£¨t£¬-t2+2t+3£©£¬¹ýµãD×÷DH¡ÍxÖᣬ¸ù¾ÝS¡÷BCD=SÌÝÐÎOCDH+S¡÷BDH-S¡÷BOC=-$\frac{3}{2}$t2+$\frac{9}{2}$t£¬¼´¿ÉÇó³öDµã×ø±ê¼°¡÷BCDÃæ»ýµÄ×î´óÖµ£¬
£¨3£©Éè¹ýµãPÓëBCƽÐеÄÖ±ÏßÓëÅ×ÎïÏߵĽ»µãΪQ£¬¸ù¾ÝÖ±ÏßBCµÄ½âÎöʽΪy=-x+3£¬¹ýµãPÓëBCƽÐеÄÖ±ÏßΪy=-x+5£¬µÃQµÄ×ø±êΪ£¨2£¬3£©£¬¸ù¾ÝPMµÄ½âÎöʽΪ£ºx=1£¬Ö±ÏßBCµÄ½âÎöʽΪy=-x+3£¬µÃMµÄ×ø±êΪ£¨1£¬2£©£¬ÉèPMÓëxÖá½»ÓÚµãE£¬Çó³ö¹ýµãEÓëBCƽÐеÄÖ±ÏßΪy=-x+1£¬¸ù¾Ý$\left\{\begin{array}{l}{y=-x+1}\\{y=-{x}^{2}+2x+3}\end{array}\right.$µÃµãQµÄ×ø±êΪ£¨$\frac{3+\sqrt{17}}{2}$£¬-$\frac{1+\sqrt{17}}{2}$£©£¬£¨$\frac{3-\sqrt{17}}{2}$£¬-$\frac{1-\sqrt{17}}{2}$£©£®
½â´ð ½â£º£¨1£©ÓÉ$\left\{\begin{array}{l}{-1-b+c=0}\\{-9+3b+c=0}\end{array}\right.$µÃ$\left\{\begin{array}{l}{b=2}\\{c=3}\end{array}\right.$£¬ÔòÅ×ÎïÏߵĽâÎöʽΪy=-x2+2x+3£¬
£¨2£©ÉèD£¨t£¬-t2+2t+3£©£¬¹ýµãD×÷DH¡ÍxÖᣬ
ÔòS¡÷BCD=SÌÝÐÎOCDH+S¡÷BDH-S¡÷BOC=$\frac{1}{2}$£¨-t2+2t+3+3£©t+$\frac{1}{2}$£¨3-t£©£¨-t2+2t+3£©-$\frac{1}{2}$¡Á3¡Á3=-$\frac{3}{2}$t2+$\frac{9}{2}$t£¬![]()
¡ß-$\frac{3}{2}$£¼0£¬
¡àµ±t=-$\frac{\frac{9}{2}}{2¡Á£¨-\frac{3}{2}£©}$=$\frac{3}{2}$ʱ£¬Dµã×ø±êÊÇ£¨$\frac{3}{2}$£¬$\frac{15}{4}$£©£¬¡÷BCDÃæ»ýµÄ×î´óÖµÊÇ$\frac{27}{8}$£»
£¨3£©Éè¹ýµãPÓëBCƽÐеÄÖ±ÏßÓëÅ×ÎïÏߵĽ»µãΪQ£¬
¡ßPµãµÄ×ø±êΪ£¨1£¬4£©£¬Ö±ÏßBCµÄ½âÎöʽΪy=-x+3£¬
¡à¹ýµãPÓëBCƽÐеÄÖ±ÏßΪy=-x+5£¬
ÓÉ$\left\{\begin{array}{l}{y=-x+5}\\{y=-{x}^{2}+2x+3}\end{array}\right.$µÃQµÄ×ø±êΪ£¨2£¬3£©£¬
¡ßPMµÄ½âÎöʽΪx=1£¬Ö±ÏßBCµÄ½âÎöʽΪy=-x+3£¬
¡àMµÄ×ø±êΪ£¨1£¬2£©£¬
ÉèPMÓëxÖá½»ÓÚµãE£¬
¡ßPM=EM=2£¬
¡à¹ýµãEÓëBCƽÐеÄÖ±ÏßΪy=-x+1£¬
ÓÉ$\left\{\begin{array}{l}{y=-x+1}\\{y=-{x}^{2}+2x+3}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=\frac{3+\sqrt{17}}{2}}\\{y=-\frac{1+\sqrt{17}}{2}}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=\frac{3-\sqrt{17}}{2}}\\{y=-\frac{1-\sqrt{17}}{2}}\end{array}\right.$£¬
¡àµãQµÄ×ø±êΪ£¨$\frac{3+\sqrt{17}}{2}$£¬-$\frac{1+\sqrt{17}}{2}$£©£¬£¨$\frac{3-\sqrt{17}}{2}$£¬-$\frac{1-\sqrt{17}}{2}$£©£¬
¡àʹµÃ¡÷QMBÓë¡÷PMBµÄÃæ»ýÏàµÈµÄµãQµÄ×ø±êΪ£¨2£¬3£©£¬£¨$\frac{3+\sqrt{17}}{2}$£¬-$\frac{1+\sqrt{17}}{2}$£©£¬£¨$\frac{3-\sqrt{17}}{2}$£¬-$\frac{1-\sqrt{17}}{2}$£©£®
µãÆÀ ´ËÌ⿼²éÁ˶þ´Îº¯Êý×ۺϣ¬Óõ½µÄ֪ʶµãÊǶþ´Îº¯ÊýµÄͼÏóÓëÐÔÖÊ¡¢Èý½ÇÐÎÌÝÐεÄÃæ»ý¡¢Ö±ÏßÓëÅ×ÎïÏߵĽ»µã£¬¹Ø¼üÊÇ×÷³ö¸¨ÖúÏߣ¬Çó³ö·ûºÏÌõ¼þµÄËùÓеãµÄ×ø±ê£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2º£Àï | B£® | 2sin55¡ãº£Àï | C£® | 2cos55¡ãº£Àï | D£® | 2tan55¡ãº£Àï |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 5.49¡Á1018 | B£® | 5.49¡Á1016 | C£® | 5.49¡Á1015 | D£® | 5.49¡Á1014 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com