平面直角坐标第xoy中,A点的坐标为(0,5).B、C分别是x轴、y轴上的两个动点,C从A出发,沿y轴负半轴方向以1个单位/秒的速度向点O运动,点B从O出发,沿x轴正半轴方向以1个单位/秒的速度运动.设运动时间为t秒,点D是线段OB上一点,且BD=OC.点E是第一象限内一点,且AE
DB.
(1)当t=4秒时,求过E、D、B三点的抛物线解析式.
(2)当0<t<5时,(如图甲),∠ECB的大小是否随着C、B的变化而变化?如果不变,求出它的大小.
(3)求证:∠APC=45°
(4)当t>5时,(如图乙)∠APC的大小还是45°吗?请说明理由.
![]()
![]()
(1)
;(2)∠ECB的大小不变.90°;(3)证明见解析;(4)∠APC>45°.
【解析】
试题分析:(1)当t=4时,知AC=OB=4,进而知OC=1,由BD=OC,AE∥DB,AE=BD可求AE=DB=OC=1,点E、点D、点B的坐标即可确定。再设出抛物线的解析式y=ax2+bx+c,将三点坐标代入即可求出a、b、c的值;
(2)连接CE,可证∠ECB=90°;
(3)由(2)可知:△ECB是等腰直角三角形,继而可证四边形ADBE是平行四边形,从而∠APC=∠EBC=45°;
(4)如图,在第二象限取点F,作AF∥BD,AF=BD,连接CF、BF.易得Rt△ACF≌Rt△OBC,再证△BCF是等腰直角三角形,由三角形的一个外角大于与它不相邻的内角知∠APC>45°.
(1)当t=4秒时,AC=OB=4,由A(0,5)得C(0,1),即OC=1.
又BD=OC,AE DB,
∴AE=DB=OC=1.
∴E(1,5)B(4,0),D(3,0).
设过E、D、B三点的抛物线解析式为y=ax2+bx+c ,则有
,解得:
;
∴抛物线解析式为
;
(2)(2)∠ECB的大小不变。
连接CE。易得Rt△ACE≌Rt△OBC(SAS)
∴CE=CB,∠ACE=∠OBC,∠AEC=∠OCB.
又∠ACE+∠AEC=90°,
∴∠ACE+∠OCB=90°
,∴∠ECB=90°.
(3)由(2)知,CE=CB,∠ECB=90°,
∴△ECB是等腰直角三角形.
∴∠EBC=45°,
又AE
DB,
∴四边形ADBE是平行四边形.
∴AB∥EB.
∴∠APC=∠EBC=45°.
(4)当t>5时,∠APC>45°,理由如下:
如图,在第二象限取点F,作AF
BD,连接CF、BF.
![]()
易得Rt△ACF≌Rt△OBC(SAS)
∴CF=CB,∠1=∠2.
又∠1+∠3=90°。∴∠2+∠3=90°即△BCF是等腰直角三角形.
∴∠CBF=45°,又∠APC>∠CBF,
∴∠APC>45°.
考点:1.二次函数关系式;2.三角形全等的判定与性质.
科目:初中数学 来源:2013-2014学年福建省厦门市业质量检查数学试卷(解析版) 题型:选择题
下列事件中是必然事件的是( )
A.任意买一张电影票,座位号是偶数
B.打开电视机,正在播动画片
C.掷一枚骰子,得到数字为偶数
D.通常加热到100℃时,水沸腾
查看答案和解析>>
科目:初中数学 来源:2013-2014学年湖北省黄冈市中考模拟考试数学试卷A(解析版) 题型:解答题
有四部不同的电影,分别记为A, B, C, D.
(1)若甲从中随机选择一部观看,则恰好是电影A的概率是 ;
(2)若甲从中随机选择一部观看,乙也从中随机选择一部观看,求甲、乙两人选择同一部电影的概率.
查看答案和解析>>
科目:初中数学 来源:2013-2014学年湖北省黄冈市中考模拟考试数学试卷A(解析版) 题型:填空题
工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是12mm,测得钢珠顶端离零件表面的距离为9mm,如图所示,则这个小孔的直径AB= mm.
![]()
查看答案和解析>>
科目:初中数学 来源:2013-2014学年湖北省黄冈市九年级下学期入学考试数学试卷(解析版) 题型:解答题
A、B两地间的距离为15千米,甲从A地出发步行前往B地,20分钟后,乙从 B地出发骑车前往A地,且乙骑车比甲步行每小时多走10千米.乙到达A地后停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B地.求甲从A地到B地步行所用的时间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com