精英家教网 > 初中数学 > 题目详情

【题目】如图,RtABO的直角边OBx轴上,OB2AB1,将RtABO绕点O顺时针旋转90°得到RtCDO,抛物线y=﹣+bx+c经过AC两点.

1)求点AC的坐标;

2)求二次函数的解析式;

3)连接AC,点P是抛物线上一点,直线OP把△AOC的周长分成相等的两部分,求点P的坐标.

【答案】1A(21)C(12);(2y--x+;(3(4,﹣12)(13)

【解析】

1)根据线段OBAB的长度易得点A的坐标,根据旋转的性质求得C点的坐标;

2)根据待定系数法即可求得;

3)由直线OP把△AOC的周长分成相等的两部分且OAOC,知AQCQ,即点QAC的中点,从而得出点Q坐标,求得直线OP解析式,联立方程可得点P坐标.

解:(1)∵OB2AB1

A(﹣21),

RtABO绕点O顺时针旋转90°得到RtCDO

C12),

2)∵抛物线y=﹣+bx+c经过AC两点,

,解得

∴二次函数的解析式为y=﹣x+

3)设OPAC交于点Q

OP将△AOC的周长分成相等的两部分,又OAOCOQOQ

AQCQ,即QAC的中点,

Q(﹣).

设直线OP的解析式为ykx,把Q(﹣)代入ykx,得=﹣k

k=﹣3

∴直线OP的解析式为y=﹣3x

,得

P14,﹣12),P2(﹣13).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,A(4,0),B(0,3),C(4,3),IABC的内心,将ABC绕原点逆时针旋转90°后,I的对应点I'的坐标为(  )

A. (﹣2,3) B. (﹣3,2) C. (3,﹣2) D. (2,﹣3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线x轴、y轴分别交于点AB,与双曲线分别交于点CD,且点C的坐标为.

1)分别求出直线、双曲线的函数表达式.

2)求出点D的坐标.

3)利用图象直接写出:当x在什么范围内取值时

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,线段ABa,点PAB中垂线MN上的一动点,过点P作直线CDAB.若在直线CD上存在点Q使得△ABQ为等腰三角形,且满足条件的点Q有且只有3个,则PM的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l为正比例函数yx的图象,点A1的坐标为(10),过点A1x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2x轴的垂线,垂足为A3,交直线l于点A3,以A3D3为边作正方形A3B3C3D3,按此规律操作下所得到的正方形A2019B2019C2019D2019的面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小卖部从批发市场购进一批李子,在销售了部分李子之后,余下的每千克降价3元,直至全部售完.销售金额(元)与李子销售量(千克)之间的关系如图所示.若销售这批李子一共赢利220元,那么这批李子的进价是_____元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点O00),点A10).已知抛物线yx2+mx2mm是常数),顶点为P

(Ⅰ)当抛物线经过点A时,求顶点P的坐标;

(Ⅱ)若点Px轴下方,当∠AOP45°时,若函数值y0,求对应自变量x的取值范围;

(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP45°时,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y与x的函数图象如图所示:

(1)求y与x之间的函数关系式;

(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等腰△ABC,∠ACB=120°,P是线段CB上一动点(与点CB不重合),连接AP,延长BC至点Q,使得∠PAC=QAC,过点Q作射线QH交线段APH,交AB于点M,使得∠AHQ=60°.

1)若∠PAC,求∠AMQ的大小(用含α的式子表示);

2)用等式表示线段QCBM之间的数量关系,并证明.

查看答案和解析>>

同步练习册答案