精英家教网 > 初中数学 > 题目详情

已知:如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△FEC.
(1)试猜想AE与BF有何关系?说明理由;
(2)当∠ACB为多少度时,四边形ABFE为矩形?说明理由.

解:(1)AE∥BF,AE=BF.
理由是:∵△ABC绕点C顺时针旋转180°得到△FEC,
∴△ABC≌△FEC,
∴AB=FE(全等三角形的对应边相等),
∠ABC=∠FEC(全等三角形的对应角相等),
∴AB∥FE(内错角相等,两直线平行),
∴四边形ABFE为平行四边形(一组对边平行且相等的四边形是平行四边形),
∴AE∥BF,AE=BF(平行四边形的对边平行且相等);

(2)当∠ACB=60°时,四边形ABFE为矩形.
理由:∵∠ACB=60°,
∵AB=AC,
∴△ABC是等边三角形,
∴AC=BC,
根据旋转的性质,可得AC=BC=CE=CF,
∴AF=BE,
∴四边形ABFE是矩形.
分析:(1)由题中已知条件,可以利用一组对边平行且相等来证明四边形ABFE为平行四边形,
(2)由矩形的对角线相等,AB=AC,可推得∠ACB=60°.
点评:本题考查的是平行四边形和矩形的判定方法,以及平行四边形和矩形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案