精英家教网 > 初中数学 > 题目详情

【题目】如图,已知:正方形ABCD,点ECB的延长线上,连接AE、DE,DE与边AB交于点F,FGBEAE于点G.

(1)求证:GF=BF;

(2)若EB=1,BC=4,求AG的长;

(3)在BC边上取点M,使得BM=BE,连接AMDE于点O.求证:FOED=ODEF.

【答案】(1)证明见解析;(2)AG=;(3)证明见解析.

【解析】

(1)根据正方形的性质得到ADBC,ABCD,AD=CD,根据相似三角形的性质列出比例式,等量代换即可;

(2)根据勾股定理求出AE,根据相似三角形的性质计算即可;

(3)延长GFAMH,根据平行线分线段成比例定理得到,由于BM=BE,得到GF=FH,由GFAD,得到等量代换得到,即,于是得到结论.

(1)∵四边形ABCD是正方形,

ADBC,ABCD,AD=CD,

GFBE,

GFBC,

GFAD,

ABCD,

AD=CD,

GF=BF;

(2)EB=1,BC=4,

=4,AE=

=4,

AG=

(3)延长GFAMH,

GFBC,

FHBC,

BM=BE,

GF=FH,

GFAD,

FOED=ODEF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整,原题:如图1,在平行四边形ABCD中,点EBC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.=3,求的值.

(1)尝试探究:

在图1中,过点EEH∥ABBG于点H,则ABEH的数量关系是________,

CGEH的数量关系是________,

的值是________.

(2)类比延伸:

如图2,在原题条件下,若=m(m>0)的值是________(用含有m的代数式表示),试写出解答过程.

(3)拓展迁移:

如图3,梯形ABCD中,DC∥AB,点EBC的延长线上的一点,AEBD相交于点F,若=a,=b(a>0,b>0)的值是________(用含a、b的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个批发商销售成本为20/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:

售价x(元/千克)


50

60

70

80


销售量y(千克)


100

90

80

70


1)求yx的函数关系式;

2)该批发商若想获得4000元的利润,应将售价定为多少元?

3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】满足下列条件的△ABC不是直角三角形的是(  )

A.A:∠B:∠C235B.A:∠B:∠C345

C.A﹣∠B=∠CD.BC3AC4AB5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,E、F分别是BC边,CD边的中点,AE、AF分别交BD于点G,H,设△AGH的面积为S1,平行四边形ABCD的面积为S2,则S1:S2的值为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点Ax轴的正半轴上,点Cy轴的正半轴上,OA=5,OC=4.

(1)如图①,在AB上取一点D,将纸片沿OD翻折,使点A落在BC边上的点E处,求D、E两点的坐标;

(2)如图②,若OE上有一动点P(不与O,E重合),从点O出发,以每秒1个单位的速度沿OE方向向点E匀速运动,设运动时间为t秒(0<t<5),过点PPMOEOD于点M,连接ME,求当t为何值时,以点P、M、E为顶点的三角形与△ODA相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2﹣(m+1)x+m

(1)求证:抛物线与x轴一定有交点;

(2)若抛物线与x轴交于A(x1,0),B(x2,0)两点,x1<0<x2,且,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b<a+c;③4a+2b+c>0;④b2-4ac>0;其中正确的结论有________(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新中梁山隧道20171121日开放通行,原中梁山隧道将封闭升级,扩容改造工程预计20183月全部完工,届时将实现双8车道通行,隧道通行能力将增加一倍,沿线交通拥堵状况将有所缓解.图中线段AB表示该工程的部分隧道.无人勘测机从隧道侧的A点出发时,测得C点正上方的E点的仰角为45°,无人机飞行到E点后,沿着坡度i=1:3的路线EB飞行,飞行到D点正上方的F点时,测得A点的俯角为12°,其中EC=100米,A、B、C、D、E、F在同一平面内,则隧道AD段的长度约为(  )米,(参考数据:tan12°≈0.2,cosl2°≈0.98)

A. 200 B. 250 C. 300 D. 540

查看答案和解析>>

同步练习册答案