精英家教网 > 初中数学 > 题目详情

【题目】如图,等边三角形ABC中,点D、E、F、分别为边AB,AC,BC的中点,M为直线BC动点,△DMN为等边三角形

(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?
(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立请说明理由;
(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论是否仍然成立?若成立,请直接写出结论,若不成立请说明理由.

【答案】
(1)

解:EN与MF相等,

证明:连接DE、DF,

∵△ABC和△DMN为等边三角形,

∴DM=DN,∠MDN=60°,

∵点D、E、F、分别为边AB,AC,BC的中点,

∴△DEF是等边三角形,

∴∠MDF=∠NDE,

在△DMF和△DNE中,

∴△DMF≌△DNE,

∴EN=MF;


(2)

解:成立,

证明:连结DE,DF,EF.

∵△ABC是等边三角形,

∴AB=AC=BC.

∵D,E,F是三边的中点,

∴DE,DF,EF为三角形的中位线.

∴DE=DF=EF,∠FDE=60°.

又∠MDF+∠FDN=60°,∠NDE+∠FDN=60°,

∴∠MDF=∠NDE.

在△DMF和△DNE中,

∴△DMF≌△DNE,

∴MF=NE;


(3)

解:画出图形如图③所示:

MF与EN相等的结论仍然成立.

由(2)得,△DMF≌△DNE,

∴MF=NE.


【解析】(1)连接DE、DF,根据等边三角形的性质得到∠MDF=∠NDE,证明△DMF≌△DNE,根据全等三角形的性质证明;(2)与(1)的方法相同;(3)根据题意画出图形,证明△DMF≌△DNE,根据全等三角形的性质证明.
【考点精析】利用全等三角形的性质和等边三角形的性质对题目进行判断即可得到答案,需要熟知全等三角形的对应边相等; 全等三角形的对应角相等;等边三角形的三个角都相等并且每个角都是60°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,C的内接△AOB中,AB=AO=4,tan∠AOB= ,抛物线y=ax2+bx经过点A(4,0)与点(-2,6).

(1)求抛物线的函数解析式;
(2)直线m与C相切于点A,交y轴于点D,求证:AD//OB;
(3)在(2)的条件下,点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动;点P的速度为每秒1个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A1 , A2在射线OA上,B1在射线OB上,依次作A2B2∥A1B1 , A3B2∥A2B1 , A3B3∥A2B2 , A4B3∥A3B2 , ….若△A2B1B2和△A3B2B3的面积分别为1、9,则△A1007B1007A1008的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场有A,B两种商品,若买2件A商品和1件B商品,共需80元;若买3件A商品和2件B商品,共需135元.
(1)设A,B两种商品每件售价分别为a元、b元,求a、b的值;
(2)B商品每件的成本是20元,根据市场调查:若按(1)中求出的单价销售,该商场每天销售B商品100件;若销售单价每上涨1元,B商品每天的销售量就减少5件. ①求每天B商品的销售利润y(元)与销售单价(x)元之间的函数关系?
②求销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据: ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:|﹣3|+ tan30°﹣ ﹣(2017﹣π)0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形纸片ABCD,AB=a,BC=b,且b<a<2b,则∠ADC的平分线DE折叠纸片,点A落在CD边上的点F处,再沿∠BEF的平分线EG折叠纸片,点B落在EF边上的点H处,则四边形CGHF的周长是( )

A.2a
B.2b
C.2(a﹣b)
D.a+b

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图正方形ABCD的边长为4,E、F分别为DC、BC中点.
(1)求证:△ADE≌△ABF.
(2)求△AEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点A,B分别是二次函数y=2x2的图象上的两个点,A、B的横坐标分别为a,b(a<0,b>0),点P(0,t)是抛物线对称轴上的任意一点.

(1)当a+b=0时,探究是否存在t,使得△PAB是以AB为底的等腰三角形?若存在,请直接写出t、a、b的其中一组值;若不存在,请说明理由;
(2)当a+b≠0时,探究是否存在t,使得△PAB是以AB为底的等腰三角形?若存在,请写出t的取值范围,并用含t的代数式表示a2+b2的值;若不存在,请说明理由;
(3)如图2作边长为4的正方形ACDE(A、C、D、E按逆时针排列),使得AC∥x轴,若边CD与二次函数的图象总有交点,求a的取值范围.

查看答案和解析>>

同步练习册答案