精英家教网 > 初中数学 > 题目详情

【题目】计算:|﹣3|+ tan30°﹣ ﹣(2017﹣π)0

【答案】解:|﹣3|+ tan30°﹣ ﹣(2017﹣π)0=3+ × ﹣2 ﹣1
=3+1﹣2 ﹣1
=3﹣2
【解析】根据实数的运算方法,零指数幂的求法,以及特殊角的三角函数值,求出|﹣3|+ tan30°﹣ ﹣(2017﹣π)0的值是多少即可.
【考点精析】利用零指数幂法则和特殊角的三角函数值对题目进行判断即可得到答案,需要熟知零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);分母口诀:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口诀:“123,321,三九二十七”.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小张在甲楼A处向外看,由于受到前面乙楼的遮挡,最近只能看到地面D处,俯角为α.小颖在甲楼B处(B在A的正下方)向外看,最近能看到地面E处,俯角为β,地面上G,F,D,E在同一直线上,已知乙楼高CF为10m,甲乙两楼相距FG为15m,俯角α=45°,β=35°.

(1)求点A到地面的距离AG;
(2)求A,B之间的距离.(结果精确到0.1m)(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.
(1)完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;

售价(元/台)

月销售量(台)

400

200

250

x


(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A1 , A2 , A3 , …,An是x轴上的点,且OA1=A1A2=A2A3=…=AnAn+1=1,分别过点A1 , A2 , A3 , …,An+1作x轴的垂线交一次函数 的图象于点B1 , B2 , B3 , …,Bn+1 , 连接A1B2 , B1A2 , A2B3 , B2A3 , …,AnBn+1 , BnAn+1依次产生交点P1 , P2 , P3 , …,Pn , 则Pn的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边三角形ABC中,点D、E、F、分别为边AB,AC,BC的中点,M为直线BC动点,△DMN为等边三角形

(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?
(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立请说明理由;
(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论是否仍然成立?若成立,请直接写出结论,若不成立请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以△ABC的BC边上一点O为圆心,经过A,C两点且与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F,若AB=BF.
(1)求证:AB是⊙O的切线;
(2)若CF=4,DF= ,求⊙O的半径r及sinB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AB⊥BD, = ,将ABCD放置在平面直角坐标系中,且AD⊥x轴,点D的横坐标为1,点C的纵坐标为3,恰有一条双曲线 (k>0)同时经过B、D两点,则点B的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:

笔试

面试

体能

83

79

90

85

80

75

80

90

73


(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.
(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).

(1)按下列要求作图:
①将△ABC向左平移4个单位,得到△A1B1C1
②将△A1B1C1绕点B1逆时针旋转90°,得到△A2B2C2
(2)求点C1在旋转过程中所经过的路径长.

查看答案和解析>>

同步练习册答案