精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是( )

A.(0,0)
B.(1,0)
C.(1,﹣1)
D.(2.5,0.5)

【答案】C
【解析】解:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,
∴点A的对应点为点D,点B的对应点为点E,
作线段AD和BE的垂直平分线,它们的交点为P(1,﹣1),
∴旋转中心的坐标为(1,﹣1).
故选C.
先根据旋转的性质得到点A的对应点为点D,点B的对应点为点E,再根据旋转的性质得到旋转中心在线段AD的垂直平分线,也在线段BE的垂直平分线,即两垂直平分线的交点为旋转中心,而易得线段BE的垂直平分线为直线x=1,线段AD的垂直平分线为以AD为对角线的正方形的另一条对角线所在的直线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图:已知在△ABC中,AB=AC,DBC边的中点,过点DDEAB,DFAC,垂足分别为E,F.

(1)求证:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点 E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.

(1)求E点坐标;
(2)设抛物线的解析式为y=a(x﹣h)2+k,求a,h,k;
(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点M,N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC的两条角平分线BD、CE交于O,且A=60°,则下列结论中不正确的是( )

A.BOC=120° B.BC=BE+CD C.OD=OE D.OB=OC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,上的一点,且,已知,则的度数是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列结论中正确的是( )

A. 三角形的一个外角大于这个三角形的任何一个内角

B. 三角形按边分类可以分为:不等边三角形、等腰三角形、等边三角形

C. 三角形的三个内角中,最多有一个钝角

D. 若三条线段,满足,则此三条线段一定能组成三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y= x2(0≤x≤2)的图象记为曲线C1 , 将C1绕坐标原点O逆时针旋转90°,得曲线C2
(1)请画出C2
(2)写出旋转后A(2,5)的对应点A1的坐标
(3)直接写出C1旋转至C2过程中扫过的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】利用直尺和圆规作一个角等于已知角的作法如下:

①以点O为圆心,以任意长为半径画弧,分别交OA、OB于点D、C;

②作射线O′B′,以点O′为圆心,以   长为半径画弧,交O′B′于点C′;

③以点C′为圆心,以   长为半径画弧,两弧交于点D′;

④过点D′作射线O′A′,∴∠A′O′B′为所求.

(1)请将上面的作法补充完整;

(2)OCD≌△O′C′D′的依据是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P,Q分别是边长为4 cm的等边三角形ABCAB,BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1 cm/s,连接AQ,CP,相交于点M.下面四个结论正确的有________(填序号).①BP=CM; ②△ABQ ≌△CAP ;③∠CMQ的度数不变,始终等于60;④当第ss时,△PBQ为直角三角形.

查看答案和解析>>

同步练习册答案