【题目】如图,在等腰三角形ABC中,AC=BC=4,∠A=30°,点D为AC的中点,点E为边AB上一个动点,连接DE,将△ADE沿直线DE折叠,点A落在点F处.当直线EF与直线AC垂直时,则AE的长为_____.
【答案】或
【解析】
当直线EF与直线AC垂直时,如图1,如图2,根据折叠的性质得到和等腰三角形的判定和性质定理以及直角三角形的性质健康得到结论.
解:∵AC=4,点D为AC的中点,
∴AD=AC=2,
①当直线EF与直线AC垂直时,如图1,
∵将△ADE沿直线DE折叠,点A落在点F处,
∴∠F=∠A=30°,∠AED=∠FED,
∵∠AGE=90°,
∴∠AEG=60°,
∴∠AED=∠FED=30°,
∴AD=DE=2,
过D作DM⊥AE与M,
∴AE=2AM=2××2=2;
当直线EF与直线AC垂直时,如图2,
∵将△ADE沿直线DE折叠,点A落在点F处,
∴∠F=∠A=30°,∠ADE=∠FDE,
∵∠AGE=∠FGE=90°,
∴∠FGD=60°,
∴∠ADE=∠FDE=30°,
∴∠A=∠ADE,
∴AE=DE,
∴AG=AD=1,
∴AE=,
综上所述,或
故答案为:或2.
科目:初中数学 来源: 题型:
【题目】如图,D、E是以AB为直径的圆O上两点,且∠AED=45°,过点D作DC∥AB.
(1)请判断直线CD与圆O的位置关系,并说明理由;
(2)若圆O的半径为,,求AE的长;
(3)过点D作,垂足为F,直接写出线段AE、BE、DF之间的数量关系 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】暴雨过后,某地遭遇山体滑坡,武警总队派出一队武警战士前往抢险. 半小时后,第二队前去支援,平均速度是第一队的1.5倍,结果两队同时到达.已知抢险队的出发地与灾区的距离为90千米,两队所行路线相同,问两队的平均速度分别是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )
实验次数 | 100 | 200 | 300 | 500 | 800 | 1000 | 2000 |
频率 | 0.365 | 0.328 | 0.330 | 0.334 | 0.336 | 0.332 | 0.333 |
A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
C.抛一个质地均匀的正六面体骰子,向上的面点数是5
D.抛一枚硬币,出现反面的概率
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司对办公大楼一块墙面进行如图所示的图案设计.这个图案由四个全等的直角三角形和一个小正方形拼接而成的大正方形,设小正方形的边长m,直角三角形较短边长n,且n=2m﹣4,大正方形的面积为S.
(1)求S关于m的函数关系式.
(2)若小正方形边长不大于3,当大正方形面积最大时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米. 现以O点为原点,OM所在直线为x轴建立直角坐标系.
(1)直接写出点M及抛物线顶点P的坐标;
(2)求这条抛物线的解析式;
(3)若要搭建一个矩形“支撑架”AD- DC- CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.
已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且∠DAE=α.
(1)如图1,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF,
①求∠DAF的度数;
②求证:△ADE≌△ADF;
(2)如图2,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由;
(3)如图3,当α=120°,BD=4,CE=5时,请直接写出DE的长为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com