| A. | $\frac{60}{13}$ | B. | 3 | C. | $\frac{5}{2}$ | D. | $\frac{13}{5}$ |
分析 作AE⊥BD于E,由矩形的性质和勾股定理求出BD,由△ABD的面积的计算方法求出AE的长即可.
解答 解:作AE⊥BD于E,如图所示:![]()
∵四边形ABCD是矩形,
∴∠BAD=90°,
∴BD=$\sqrt{A{B}^{2}+A{D}^{2}}$=$\sqrt{{5}^{2}+1{2}^{2}}$=13,
∵△ABD的面积=$\frac{1}{2}$BD•AE=$\frac{1}{2}$AB•AD,
∴AE=$\frac{AB•AD}{BD}$=$\frac{5×12}{13}$=$\frac{60}{13}$;
即点A到对角线BD的距离为$\frac{60}{13}$.
故选:A.
点评 本题考查了矩形的性质、勾股定理、三角形面积的计算;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 6+4$\sqrt{2}$ | B. | 16 | C. | 12+8$\sqrt{2}$ | D. | 32 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 24,27 | B. | 26,27 | C. | 26,24 | D. | 20,24 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com