精英家教网 > 初中数学 > 题目详情

【题目】如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.

(1)求证:AE⊥BF;
(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP到BA的延长线于点Q,求sin∠BQP的值;

(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.

【答案】
(1)

证明:如图1,

∵E,F分别是正方形ABCD边BC,CD的中点,

∴CF=BE,

在Rt△ABE和Rt△BCF中,

∴Rt△ABE≌Rt△BCF(SAS),

∠BAE=∠CBF,

又∵∠BAE+∠BEA=90°,

∴∠CBF+∠BEA=90°,

∴∠BGE=90°,

∴AE⊥BF.


(2)

解:如图2,根据题意得,

FP=FC,∠PFB=∠BFC,∠FPB=90°

∵CD∥AB,

∴∠CFB=∠ABF,

∴∠ABF=∠PFB,

∴QF=QB,

令PF=k(k>0),则PB=2k

在Rt△BPQ中,设QB=x,

∴x2=(x﹣k)2+4k2

∴x=

∴sin∠BQP= = =


(3)

解:∵正方形ABCD的面积为4,

∴边长为2,

∵∠BAE=∠EAM,AE⊥BF,

∴AN=AB=2,

∵∠AHM=90°,

∴GN∥HM,

=

=

∴SAGN=

∴S四边形GHMN=SAHM﹣SAGN=1﹣ =

∴四边形GHMN的面积是


【解析】(1)运用Rt△ABE≌Rt△BCF,再利用角的关系求得∠BGE=90°求证;(2)△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QB求解;(3)先求出正方形的边长,再根据面积比等于相似边长比的平方,求得SAGN=
再利用S四边形GHMN=SAHM﹣SAGN求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,﹣5).

(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有什么位置关系,并给出证明;
(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.
(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;
(2)若tan∠F= ,CD=a,请用a表示⊙O的半径;
(3)求证:GF2﹣GB2=DFGF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论: ①AC=FG;②SFAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC,
其中正确的结论的个数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为1的正方形ABCD的对角线AC、BD相交于点O,有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是
①EF= OE;②S四边形OEBF:S正方形ABCD=1:4;③BE+BF= OA;④在旋转过程中,当△BEF与△COF的面积之和最大时,AE=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC 是等边三角形,点P 是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC 的周长为36,则PD+PE+PF=( )

A.12
B.8
C.4
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB为⊙O的直径,BC⊥AB于B,且BC=AB,D为半圆⊙O上的一点,连接BD并延长交半圆⊙O的切线AE于E.
(1)如图1,若CD=CB,求证:CD是⊙O的切线;

(2)如图2,若F点在OB上,且CD⊥DF,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小苏和小林在如图1所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是(
A.两人从起跑线同时出发,同时到达终点
B.小苏跑全程的平均速度大于小林跑全程的平均速度
C.小苏前15s跑过的路程大于小林前15s跑过的路程
D.小林在跑最后100m的过程中,与小苏相遇2次

查看答案和解析>>

同步练习册答案