【题目】如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).
(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?
(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.
【答案】解:∵如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.
∴根据勾股定理,得AB=。
(1)以A,P,M为顶点的三角形与△ABC相似,分两种情况:
①当△AMP∽△ABC时,,即,解得;
②当△APM∽△ABC时,,即,解得t=0(不合题意,舍去)。
综上所述,当时,以A、P、M为顶点的三角形与△ABC相似。
(2)存在某一时刻t,使四边形APNC的面积S有最小值.理由如下:
假设存在某一时刻t,使四边形APNC的面积S有最小值。
如图,过点P作PH⊥BC于点H.则PH∥AC,
∴,即。∴。
∴。
∵>0,∴S有最小值。
当t= 时,S最小值=.
答:当t=时,四边形APNC的面积S有最小值,其最小值是。
【解析】
试题根据勾股定理求得AB=5cm。
(1)分△AMP∽△ABC和△APM∽△ABC两种情况讨论:利用相似三角形的对应边成比例来求t的值。
(2)如图,过点P作PH⊥BC于点H,构造平行线PH∥AC,由平行线分线段成比例求得以t表示的PH的值;然后根据“S=S△ABC﹣S△BPH”列出S与t的关系式,则由二次函数最值的求法即可得到S的最小值。
科目:初中数学 来源: 题型:
【题目】如图,在中,按以下步骤作图:
第一步:分别以点为圆心,以大于的长为半径画弧,两弧相交于两点;
第二步:作直线交于点,连接.
(1)是______三角形;(填“等边”、“直角”、“等腰”)
(2)若,则的度数为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果
下面有三个推断:
①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;
②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;
③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.
其中合理的是
A. ① B. ② C. ①② D. ①③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】判断题,正确的打“√”,错误的打“×”.
(1),得(______). (2)由,得(______).
(3)2是不等式的解(______). (4)由,得(______).
(5)如果,,则(______). (6)如果,则(______).
(7)(______)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h),两车之间的距离为(km),图中的折线表示与之间的函数关系.根据图象进行以下探究:
(1)甲、乙两地之间的距离为 km;
(2)请解释图中B点的实际意义: ;
(3)求慢车和快车的速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,
(1)求证:△ABC是等边三角形;
(2)求圆心O到BC的距离OD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读下列材料,再解答下列问题:
题:分解因式:
解:将“”看成整体,设,则原式=
再将“”还原,得原式=.
上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你仿照上面的方法解答下列问题:
(1)因式分解: ; .
(2)因式分解: ; .
(3)求证:若为正整数,则式子的值一定是某一个正整数的平方.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com