精英家教网 > 初中数学 > 题目详情

【题目】下图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果

下面有三个推断:

①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47

②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5

③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45

其中合理的是

A. B. C. ①② D. ①③

【答案】B

【解析】①当抛掷次数是100时,计算机记录“正面向上”的次数是47,因试验次数比较少,所以只能说“正面向上”的频率是0.47,不能说概率是0.47,故不正确;

②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;

③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故不正确.

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知梯形 ABCD 中,ADBC,对角线 ACBD 相交于点O AOB 与△BOC 的面积分别为 48,则梯形ABCD 的面积等于___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班数学兴趣小组对不等式组,讨论得到以下结论:①若a5,则不等式组的解集为3<x≤5;②若a2,则不等式组无解;③若不等式组无解,则a的取值范围为a<3;④若不等式组只有两个整数解,则a的值可以为5.1,其中,正确的结论的序号是____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△和△中,分别为边和边上的中线,再从以下三个条件:①;②;③中任取两个为已知条件,另一个为结论,则最多可以构成_______个正确的命题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).

(1)画出△ABC关于x轴对称的△A1B1C1

(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2

(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图, 是半圆的直径,D是半圆上的一个动点(点D不与点AB 重合),

1)求证:AC是半圆的切线;

2)过点OBD的平行线,交AC于点E,交AD于点F,EF=4, AD=6, BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2019年,在新泰市美丽乡村建设中,甲、乙两个工程队分别承担某处村级道路硬化和道路拓宽改造工程.己知道路硬化和道路拓宽改造工程的总里程数是86千米,其中道路硬化的里程数是道路拓宽里程数的2倍少1千米.

1)求道路硬化和道路拓宽里程数分别是多少千米;

2)甲、乙两个工程队同时开始施工,甲工程队比乙工程队平均每天多施工10米.由于工期需要,甲工程队在完成所承担的施工任务后,通过技术改进使工作效率比原来提高了.设乙工程队平均每天施工米,若甲、乙两队同时完成施工任务,求乙工程队平均每天施工的米数和施工的天数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).

(1)当t为何值时,以A,P,M为顶点的三角形与ABC相似?

(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与轴相交于A、B两点(B点在A点的右侧),与轴交于C点.

(1)A点的坐标是   ;B点坐标是   

(2)直线BC的解析式是:   

(3)点P是直线BC上方的抛物线上的一动点(不与B、C重合),是否存在点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积,若不存在,试说明理由;

(4)若点Mx轴上,点N在抛物线上,以A、C、M、N为顶点的四边形是平行四边形时,请直接写出点M点坐标.

查看答案和解析>>

同步练习册答案