【题目】在△和△中,,和分别为边和边上的中线,再从以下三个条件:①;②;③中任取两个为已知条件,另一个为结论,则最多可以构成_______个正确的命题.
【答案】1
【解析】
分别讨论如果①②,那么③;如果①③,那么②;如果②③,那么①三种情况,根据全等三角形的判定定理逐一判断即可的答案.
如图,当,时,
∵和分别为边和边上的中线,
∴AD=A′D′,
在△ADC和△A′D′C′中,,
∴△ADC≌△A′D′C′,(SAS)
∴CD=C′D′,
∴如果①②,那么③是真命题,
当,,
同理可得:AD=A′D′,
∵SSA不能判定△ADC≌△A′D′C′,
∴不能判定AC=A′C′,故如果①③,那么②不是真命题,
当,时,
∵SSA不能判定△ADC≌△A′D′C′,
∴不能判定AD=A′D′,
∴不能判定AB=A′B′,故如果②③,那么①不是真命题,
综上所述:是真命题的有1种,
故答案为:1
科目:初中数学 来源: 题型:
【题目】有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m.
(1)在如图所示的直角坐标系中,求出该抛物线的解析式.
(2)在正常水位的基础上,当水位上升h(m)时,桥 下水面的宽度为d(m),试求出用d表示h的函数关系式;
(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面的宽度不得小于18m,求
水深超过多少米时就会影响过往船只在桥下顺利航行?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,按以下步骤作图:
第一步:分别以点为圆心,以大于的长为半径画弧,两弧相交于两点;
第二步:作直线交于点,连接.
(1)是______三角形;(填“等边”、“直角”、“等腰”)
(2)若,则的度数为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知等边和等腰,,.
(1)如图1,点在上,点在上,是的中点,连接,,则线段与之间的数量关系为 ;
(2)如图2,点在内部,点在外部,是的中点,连接,,则(1)中的结论是否仍然成立?若成立,请给出证明,若不成立,请说明理由.
(3)如图3,若点在内部,点和点重合,点在下方,且为定值,当最大时,的度数为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC的三边AB,BC,CA分别拉长到原来的两倍,得点D,E,F,已知△DEF的面积为42,则△ABC的面积为( )
A.14B.7C.6D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.
(1)求证:CD=BF;
(2)求证:AD⊥CF;
(3)连接AF,试判断△ACF的形状.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果
下面有三个推断:
①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;
②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;
③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.
其中合理的是
A. ① B. ② C. ①② D. ①③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】判断题,正确的打“√”,错误的打“×”.
(1),得(______). (2)由,得(______).
(3)2是不等式的解(______). (4)由,得(______).
(5)如果,,则(______). (6)如果,则(______).
(7)(______)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com