精英家教网 > 初中数学 > 题目详情

如图,△ABC中,AC=3,BC=4,AB=5,线段DE⊥AB,且△BDE的面积是△ABC面积的三分之一,那么,线段BD长为________.


分析:首先根据勾股定理的逆定理判断三角形ABC为直角三角形,再证明△ABC∽△EDB,利用相似三角形的性质即可求出线段BD长.
解答:∵AC=3,BC=4,AB=5,
∴AC2+BC2=AB2
∴三角形ABC为直角三角形,
∴∠C=90°,
∵DE⊥AB,
∴∠EDB=90°,
∴△ABC∽△EDB,
∴(2=
∵△BDE的面积是△ABC面积的三分之一,
∴BD=
故答案为
点评:本题考查了勾股定理的逆定理和相似三角形的判断以及性质的运用,题目的综合性很好,难度不大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案