【题目】已知关于x的方程
(1)求证:无论k为何值,方程总有实数根;
(2)若等腰△ABC的一边长为2,另两边的长为这个方程的两个实数根,求△ABC的周长.
【答案】(1)见解析;(2)5;
【解析】
(1)先计算△,化简得到△=(k-2)2,易得△≥0,然后根据△的意义即可得到结论;
(2)利用求根公式计算出方程的两根x1=k-1,x2=1,则可设b=k-1,c=2,然后讨论:当2为腰;当1为腰,分别求出边长,但要满足三角形三边的关系,最后计算周长.
(1)证明:△=k24×1×(k1)=k24k+4=(k2)2
∵无论k取什么实数值,(k2)20,
∴△0,
∴无论k取什么实数值,方程总有实数根;
(2)∵x=,
∴x1=k1,x2=1,
∵两边恰好是这个方程的两个实数根,
当2为腰,则k1=2,解得k=3,此时三角形的周长=2+2+1=5;
当1为腰时,k1=1,k=2,此时1+1=2,故此种情况不存在.
综上所述,△ABC的周长为5.
科目:初中数学 来源: 题型:
【题目】如图,已知正五边形ABCDE,AF∥CD交DB的延长线于点F,交DE的延长线于点G.
(1)写出图中所有的等腰三角形;
(2)求证:∠G=2∠F.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,窗帘的褶皱是指按照窗户的实际宽度将窗帘布料以一定比例加宽的做法,褶皱之后的窗帘更能彰显其飘逸、灵动的效果.其中,窗宽度的1.5倍为平褶皱,窗宽度的2倍为波浪褶皱.如图②,小莉房间的窗户呈长方形,窗户的宽度(AD)比高度(AB)的少0.5m,某种窗帘的价格为120元/m2.如果以波浪褶皱的方式制作该种窗帘比以平褶皱的方式费用多180元,求小莉房间窗户的宽度与高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究
如图,已知抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.其顶点为D,对称轴是直线l,且与x轴交于点H.
(1)求点A,B,C,D的坐标;
(2)若点P是该抛物线对称轴l上的﹣个动点,求△PBC周长的最小值;
(3)若点E是线段AC上的一个动点(E与A.C不重合),过点E作x轴的垂线,与抛物线交于点F,与x轴交于点G.则在点E运动的过程中,是否存在EF=2EG?若存在,求出此时点E的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AP是⊙O的切线,点A为切点,BP与⊙O交于点C,点D是AP的中点,连结CD.
(1)求证:CD是⊙O的切线;
(2)若AB=2,∠P=30°,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知x1,x2是关于x的一元二次方程x2+2(m-3) x+m2+1=0的两个根.
(1)当m取何值时,方程有两个不相等的实数根?
(2)若以x1,x2为对角线的菱形边长是,试求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形的对角线在轴上,若菱形的周长为,点的坐标为,反比例函数的图象经过点.
(1)求该反比例函数的解析式;
(2)若点是反比例函数上的一点,且的面积恰好等于菱形的面积,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则
①二次函数的最大值为a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④当y>0时,﹣1<x<3,其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com