精英家教网 > 初中数学 > 题目详情

【题目】书店举行购书优惠活动:

①一次性购书不超过100元,不享受打折优惠;

②一次性购书超过100元但不超过200元,一律按原价打九折;

③一次性购书超过200元,一律按原价打七折.

小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是_________.

【答案】248元或296

【解析】

设小丽第一次购书的原价为x元,则第二次购书的原价为3x元,分xxx100x100四种情况,找出关于x的一元一次方程,解之即可得出结论.

设小丽第一次购书的原价为x元,则第二次购书的原价为3x元,

根据题意得:当3x100,即x时,x3x229.4

解得:x57.35(舍去);

1003x200,即x时,x0.9×3x229.4

解得:x62

x3x248

3x200x100,即x100时,x0.7×3x229.4

解得:x74

x3x296

x100时,0.9x0.7×3x229.4

解得:x76.47(舍去).

答:小丽这两次购书原价的总和是248元或296元.

故填:248元或296.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD内作EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AHEF,垂足为H.

(1)如图2,将ADF绕点A顺时针旋转90°得到ABG.

①求证:AGE≌△AFE;

②若BE=2,DF=3,求AH的长.

(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为(  )

A. 2cm B. 4cm C. 2cm22cm D. 4cm44cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某报社为了了解市民获取新闻的最主要途径,开展了一次抽样调查,根据调查结果绘制了如图三种不完整的统计图表.

组别

获取新闻的最主要途径

人数

A

电脑上网

280

B

手机上网

m

C

电视

140

D

报纸

n

E

其它

80

请根据图表信息解答下列问题:

1)统计表中的m   n   ,并请补全条形统计图;

2)扇形统计图中D所对应的圆心角的度数是   

3)若该市约有120万人,请你估计其中将电脑上网手机上网作为获取新闻的最主要途径的总人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,BC是⊙O的切线,D为⊙O上的一点,CD=CB,延长CDBA的延长线于点E,

(1)求证:CD为⊙O的切线;

(2)若EA=BO=2,求图中阴影部分的面积(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2﹣2ax+c(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.

(1)求抛物线的解析式;

(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;

(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CD是线段AB上两点,MN分别是线段ADBC的中点,下列结论:①若AD=BM,则AB=3BD;②若AC=BD,则AM=BN;③AC-BD=2MC-DN);④2MN=AB-CD.其中正确的结论是(

A.①②③B.③④C.①②④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】食品安全受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两份尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题.

1)接受问卷调查的学生共有_____人,扇形统计图中基本了解部分所对应扇形的圆心角为_____.

2)请补全条形统计图.

3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到了解基本了解程度的总人数.

4)若从对食品安全知识达到了解程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.

【答案】16090°;(2)补图见解析;(3300;(4

【解析】分析:(1)根据了解很少的人数除以了解很少的人数所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)用总人数乘以了解基本了解程度的人数所占的比例,即可求出达到“了解”和“基本了解”程度的总人数(4)根据题意列出表格,再根据概率公式即可得出答案.

详解:(16090°.

2)补全的条形统计图如图所示.

3)对食品安全知识达到了解基本了解的学生所占比例为,由样本估计总体,该中学学生中对食品安全知识达到了解基本了解程度的总人数为.

4)列表法如表所示,

男生女生

男生

男生

女生

女生

男生

男生男生

男生女生

男生女生

男生

男生男生

男生女生

男生女生

女生

男生女生

男生女生

女生女生

女生

男生女生

女生女生

所有等可能的情况一共12种,其中选中1个男生和1个女生的情况有8种,所以恰好选中1个男生和1个女生的概率是.

点睛:本题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,根据题意求出总人数是解题的关键;注意运用概率公式:概率=所求情况数与总情况数之比.

型】解答
束】
24

【题目】为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2015年图书借阅总量是7500本,2017年图书借阅总量是10800.

1)求该社区的图书借阅总量从2015年至2017年的年平均增长率.

2)已知2017年该社区居民借阅图书人数有1350人,预计2018年达到1440人,如果2017年至2018年图书借阅总量的增长率不低于2015年至2017年的年平均增长率,设2018年的人均借阅量比2017年增长a%,求a的值至少是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点PEFGH分别是折痕(如图2).设AEx(0<x<2),给出下列判断:①当x=1时,点P是正方形ABCD的中心;②当x时,EF+GHAC;③当0<x<2时,六边形AEFCHG面积的最大值是3;④当0<x<2时,六边形AEFCHG周长的值不变.其中正确的选项是( )

A. ①③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

同步练习册答案