【题目】某地城管需要从甲、乙两个仓库向A、B两地分别运送10吨和5吨的防寒物资,甲、乙两仓库分别有8吨、7吨防寒物资.从甲、乙两仓库运送防寒物资到A、B两地的运费单价(元/吨)如表1,设从甲仓库运送到A地的防寒物资为x吨(如表2).
(1)完成表2 , ;
(2)求运送的总运费y(元)与x(吨)之间的函数表达式,并直接写出x的取值范围;
(3)直接写出最低总运费.
【答案】(1);(2);(3)990元.
【解析】
(1)由题意填表即可;
(2)根据题意表示出甲仓库和乙仓库分别运往A、B两港口的物资数,再由等量关系:总运费=甲仓库运往A、B港口的费用+乙仓库运往A、B港口的费用,列式并化简解答即可;
(3)因为所得的函数为一次函数,由増减性可知:y随x增大而减少,则当x=8时,y最小,并求出最小值即可
(1)设从甲仓库运送到地的防寒物资为吨,可得从甲仓库运送到地的防寒物资为吨,从乙仓库运送到B地的防寒物资为吨;
故答案为:,
(2)运送的总运费y(元)与x(吨)之间的函数表达式为:,化简得:
(3)由(2)得,随增大而减少,所以当时总运费最小,当时,,最低总运费为990元.
科目:初中数学 来源: 题型:
【题目】如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=2,AD=4,AC的垂直平分线EF交AD于点E、交BC于点F,则EF的长为( )
A. 4 B. 2 C. D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知等腰直角中,BD为斜边上的中线,E为DC上的一点,且于G,AG交BD于F.
(1)求证:AF=BE.
(2)如图②,当点E在DC的延长线上,其它条件不变,①的结论还能成立吗?若不能,请说明理由;若能,请予以证明。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:
阅读时间 (小时) | 2 | 2.5 | 3 | 3.5 | 4 |
学生人数(名) | 1 | 2 | 8 | 6 | 3 |
则关于这20名学生阅读小时数的说法正确的是( )
A. 众数是8 B. 中位数是3 C. 平均数是3 D. 方差是0.34
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在求1+3+32+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②﹣①得:3S﹣S=39﹣1,即2S=39﹣1,∴S=.
请阅读张红发现的规律,并帮张红解决下列问题:
(1)爱动脑筋的张红想:如果把“3”换成字母m(m≠0且m≠1),应该能用类比的方法求出1+m+m2+m3+m4+…+m2018的值,对该式的值,你的猜想是______(用含m的代数式表示).
(2)证明你的猜想是正确的.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①所示,直线L:y=mx+5m与x轴负半轴,y轴正半轴分别交于A、B两点.
(1)当OA=OB时,求点A坐标及直线L的解析式;
(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=4,求BN的长;
(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③.
问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/s秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点Q也同时停止运动,当点P运动__秒时,以P、Q、E、F为顶点的四边形是平行四边形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com