精英家教网 > 初中数学 > 题目详情
3.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=$\frac{k}{x}$(k>0,x>0)的图象上,点D的坐标为(4,3).
(1)求k的值;
(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=$\frac{k}{x}$(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.

分析 (1)过点D作x轴的垂线,垂足为F,首先得出A点坐标,再利用反比例函数图象上点的坐标性质得出即可;
(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数$y=\frac{32}{x}$(x>0)的图象D′点处,得出点D′的纵坐标为3,求出其横坐标,进而得出菱形ABCD平移的距离.

解答 解:(1)过点D作x轴的垂线,垂足为F,
∵点D的坐标为(4,3),
∴OF=4,DF=3,
∴OD=5,
∴AD=5,
∴点A坐标为(4,8),
∴k=xy=4×8=32,
∴k=32;

(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数$y=\frac{32}{x}$(x>0)的图象D′点处,
过点D′做x轴的垂线,垂足为F′.
∵DF=3,
∴D′F′=3,
∴点D′的纵坐标为3,
∵点D′在$y=\frac{32}{x}$的图象上
∴3=$\frac{32}{x}$,
解得:x=$\frac{32}{3}$,
即OF′=$\frac{32}{3}$,
∴FF′=$\frac{32}{3}$-4=$\frac{20}{3}$,
∴菱形ABCD平移的距离为$\frac{20}{3}$.

点评 此题主要考查了反比例函数综合以及反比例函数图象上点的坐标性质,得出A点坐标是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.图1、图2为同一长方体房间的示意图,图3为该长方体的表面展开图.
(1)蜘蛛在顶点A′处.
①苍蝇在顶点B处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线.
②苍蝇在顶点C处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD爬行的最近路线A′GC和往墙面BB′C′C爬行的最近路线A′HC,试通过计算判断哪条路线更近.
(2)在图3中,半径为10dm的⊙M与D′C′相切,圆心M到边CC′的距离为15dm,蜘蛛P在线段AB上,苍蝇Q在⊙M的圆周上,线段PQ为蜘蛛爬行路线,若PQ与⊙M相切,试求PQ长度的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,A(-4,$\frac{1}{2}$),B(-1,2)是一次函数y1=ax+b与反比例函数y2=$\frac{m}{x}$图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.
(1)根据图象直接回答:在第二象限内,当x取何值时,y1-y2>0?
(2)求一次函数解析式及m的值;
(3)P是线段AB上一点,连接PC,PD,若△PCA和△PDB面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.定义新运算:对于任意实数a,b都有:a⊕b=a(a-b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2-5)+1=2×(-3)+1=-5,那么不等式3⊕x<13的解集为x>-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,已知在△ABC中,∠A=90°
(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).
(2)若∠B=60°,AB=3,求⊙P的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图汽车标志中不是中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.“植树节”时,九年级一班6个小组的植树棵数分别是:5,7,3,x,6,4.已知这组数据的众数是5,则该组数据的平均数是5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有5n+1根小棒.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,已知A(2$\sqrt{3}$,2)、B(2$\sqrt{3}$,1),将△AOB绕着点O逆时针旋转,使点A旋转到点A′(-2,2$\sqrt{3}$)的位置,则图中阴影部分的面积为$\frac{3}{4}$π.

查看答案和解析>>

同步练习册答案