精英家教网 > 初中数学 > 题目详情
20.?ABCD的对角线相交于点O,下列结论错误的是(  )
A.?ABCD是中心对称图形B.△AOB与△BOC的面积相等
C.△AOB≌△CODD.△AOB≌△BOC

分析 由平行四边形的性质得出OA=OC,OB=OD,得出△AOB的面积=△BOC的面积,平行四边形是中心对称图形,由SAS证出△AOB≌△COD;即可得出结论.

解答 解:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∴△AOB的面积=△BOC的面积,平行四边形是中心对称图形,
在△AOB和△COD中,
$\left\{\begin{array}{l}{OA=OC}\\{∠AOB=∠COD}\\{OB=OC}\end{array}\right.$,
∴△AOB≌△COD(SAS),
∴A、B、C正确,D错误;
故选:D.

点评 本题考查了平行四边形的性质、全等三角形的判定、三角形的面积;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

10.下列二次根式与$\sqrt{2}$是同类二次根式的是(  )
A.$\sqrt{8}$B.$\sqrt{45}$C.$\sqrt{\frac{1}{3}}$D.$\sqrt{6}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.在?ABCD中,如果添加一个条件,就可推出?ABCD是矩形,那么添加的条件可以是(  )
A.AB=BCB.AC=BDC.AC⊥BDD.AB⊥BD

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在平面直角坐标系xOy中,直线y=x-3与x轴相交于点B、y轴相交于点C,过点B、C的抛物线y=-x2+bx+c与x轴交于另一点A,顶点为D点.
(1)求tan∠OCA的值;
(2)若点P为抛物线上x轴上方一点,且∠DAP=∠ACB,求点P的坐标;
(3)若点Q为抛物线y=-x2+bx+c对称轴上一动点,试探究当点Q为何位置时∠OQC最大,请求出点Q的坐标及sin∠OQC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.阅读下面材料:
小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.

小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).
(1)请你回答:AP的最大值是6.
(2)参考小伟同学思考问题的方法,解决下列问题:
如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,请写出求AP+BP+CP的最小值长的解题思路.
提示:要解决AP+BP+CP的最小值问题,可仿照题目给出的做法.把△ABP绕B点逆时针旋转60,得到△A′BP′.
①请画出旋转后的图形
②请写出求AP+BP+CP的最小值的解题思路(结果可以不化简).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,直线y=x+3分别交x,y轴于点D,C,点B在x轴上,OB=OC,过点B作直线m∥CD.点P、Q分别为直线m和直线CD上的动点,且点P在x轴的上方,满足∠POQ=45°
(1)则∠PBO=135度;
(2)问:PB•CQ的值是否为定值?如果是,请求出该定值;如果不是,请说明理由;
(3)求证:CQ2+PB2=PQ2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.实数a,b,c在数轴上对应的点如图所示,下列式子中正确的是(  )
A.-a<b<cB.ab<acC.-a+b>-a+cD.|a-b|<|a-c|

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知关于x的方程x2+2(a-1)x+a2-9a-4=0的两根为x1、x2,且满足x1x2-3x1-3x2=0,求(1+$\frac{4}{{a}^{2}-4}$)•$\frac{a+2}{a}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在?ABCD中,EF经过对角线的交点O,且EF⊥AC分别交CD、AB于点E,F,试说明四边形AECF是菱形.

查看答案和解析>>

同步练习册答案