精英家教网 > 初中数学 > 题目详情

(本题满分8分)如图,在△ABC中,AB、AC的垂直平分线分别交BC于E、F两点,∠B+∠C=60°.

(1)求∠EAF的度数;

(2)若BC=13,求△AEF的周长.

 

(1)60°;(2)13.

【解析】

试题分析:(1)由AB、AC的垂直平分线分别交BC于E、F两点,可得AE=BE,AF=CF,又由∠B+∠C=60°,则可得∠BAE+∠CAF=60°,继而求得∠BAC的度数,则可求得答案;

(2)由BC=13,AE=BE,AF=CF,即可得△AEF的周长等于BC的长.

试题解析:(1)∵DE是AB的垂直平分线,∴AE=BE,∴∠DAE=∠B.

∵GF是AC的垂直平分线,∴AF=CF,∴∠CAF=∠C.

∵∠B+∠C=60°,∴∠BAE+∠CAF=60°.∵∠BAC=120°,∴∠EAF=∠BAC﹣(∠BAE+∠CAF)=60°;

(2)由(1)知AE=BE,AF=FC.∴C△AEF=AE+AF+EF=BE+EF+FC=BC=13.

考点:线段垂直平分线的性质.

 

练习册系列答案
相关习题

科目:初中数学 来源:2014-2015学年江苏省东台市九年级上学期期中考试数学试卷(解析版) 题型:填空题

如图,一圆与平面直角坐标系中的x轴切于点A(8,0),与y轴交于点B(0,4),C(0,16),则该圆的直径为__________.

 

 

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏省八年级上学期期中数学试卷(解析版) 题型:解答题

【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.

【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.

【深入探究】

第一种情况:当∠B是直角时,△ABC≌△DEF.

(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 ,可以知道Rt△ABC≌Rt△DEF.

第二种情况:当∠B是钝角时,△ABC≌△DEF.

(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.

第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.

(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)

(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若 ,则△ABC≌△DEF.

 

 

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏省八年级上学期期中数学试卷(解析版) 题型:填空题

的立方根是 .

 

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏省八年级上学期期中数学试卷(解析版) 题型:选择题

下列四组数据,能作为直角三角形的三边长的是

A.2、4、6 B.2、3、4 C.5、7、12 D.8、15、17

 

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏省八年级上学期期中数学试卷(解析版) 题型:填空题

如图,∠DAB=∠EAC=60°,AB=AD,AC=AE,BE和CD相交于O,AB和CD相交于P,则∠DOE的度数是_______°.

 

 

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏省八年级上学期期中数学试卷(解析版) 题型:填空题

已知为两个连续的整数,且,则

 

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏盐城东台苏东双语学校初二上第一次检测二数学卷(解析版) 题型:解答题

①如图:A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站, 将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在 图中确定该点(保留作图痕迹)

②如图:某地有两所大学M、N和两条相交叉的公路a、b,现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等。你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案;

 

 

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏徐州丰县中学八年级上学期第一次质检数学试卷(解析版) 题型:选择题

在△ABC内一点P满足PA=PB=PC,则点P一定是△ABC( )

A.三条角平分线的交点

B.三边垂直平分线的交点

C.三条高的交点

D.三条中线的交点

 

查看答案和解析>>

同步练习册答案