【题目】如图,菱形的对角线BD,AC的长分别是6和8,求菱形的周长与面积.
【答案】解:菱形的对角线BD,AC的长分别是6和8,
则菱形的面积为 ×6×8=24,
菱形对角线互相垂直平分,
∴BO=OD=3,AO=OC=4,
∴AB= =5,
故菱形的周长为20,
答:菱形的周长为20,面积为24.
【解析】根据菱形的对角线可以求得菱形ABCD的面积,根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOB中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.
【考点精析】解答此题的关键在于理解菱形的性质的相关知识,掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半.
科目:初中数学 来源: 题型:
【题目】方程4x2=81化成一元二次方程的一般形式后,其中的二次项系数、一次项系数和常数项分别是( )
A.4,0,81B.﹣4,0,81C.4,0,﹣81D.﹣4,0,﹣81
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是91,设每个枝干长出x小分支,列方程为( )
A.(1+x)2=91B.1+x+x2=91C.(1+x)x=91D.1+x+2x=91
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC的边长为30,点M为线段AB上一动点,将等边△ABC沿过点M的直线折叠,使点A落在直线BC上的点D处,且BD∶DC=1∶4,折痕与直线AC交于点N,则AN的长为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.
(1)求证:四边形DBFE是平行四边形;
(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠1=∠2,∠3=∠4,∠BOD=∠AOB=90°.下列判断:①射线OF是∠BOE的角平分线;②∠DOE的补角是∠BOC;③∠AOC的余角只有∠COD;④∠DOE的余角有∠BOE和∠COD;⑤∠COD=∠BOE.其中正确的有( )
A. 5个 B. 4个 C. 3个 D. 2个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com