【题目】已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.
(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;
(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,
①∠MON与旋转度数n°有怎样的数量关系?说明理由;
②当n为多少时,∠MON为直角?
(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OC绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.
【答案】(1)25°;(2)①n°+25°,②n=65°;(3)m°+25°.
【解析】
(1)如图1,根据OM平分∠AOB,∠AOB=130°,利用角平分线的定义可得:∠AOM=∠AOB=×130°=65°,再根据ON平分∠COD,∠COD=80°,可得∠AON=∠COD=×80°=40°,
进而求出∠MON=∠AOM﹣∠AON=65°﹣40°=25°,
(2)①如图2中,根据图形中角的和差关系可得:∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°,
②当∠MON=90°时,由于n°+25°=90°,所以n=65°,
(3)如图3中,根据图中角的和差关系可得:∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°.
(1)如图1,∵OM平分∠AOB,∠AOB=130°,
∴∠AOM=∠AOB=×130°=65°,
∵ON平分∠COD,∠COD=80°,
∴∠AON=∠COD=×80°=40°,
∴∠MON=∠AOM﹣∠AON=65°﹣40°=25°,
(2)①如图2中,∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°,
②当∠MON=90°时,n°+25°=90°,
∴n=65°,
(3)如图3中,∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°.
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…依此类推,则平行四边形AO4C5B的面积为( )
A. cm2 B. cm2 C. cm2 D. cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】水果店以每箱60元新进一批苹果共400箱,为计算总重量,从中任选30箱苹果称重,发现每箱苹果重量都在10千克左右,现以10千克为标准,超过10千克的数记为正数,不足10千克的数记为负数,将称重记录如下:
规格 | ﹣0.2 | ﹣0.1 | 0 | 0.1 | 0.2 | 0.5 |
筐数 | 5 | 8 | 2 | 6 | 8 | 1 |
(1)求30箱苹果的总重量
(2)若每千克苹果的售价为10元,则卖完这批苹果共获利多少元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)计算:(﹣1)2018﹣8÷(﹣2)3+4×(﹣)3;
(2)先化简,再求值:3(a2b﹣2ab2)﹣(3a2b﹣2ab2),其中|a﹣1|+(b+)2=0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD位于平面直角坐标系的第一象限,B、C在x轴上A点函数上,且AB∥CD∥y轴,AD∥x轴,B(1,0)、C(3,0)。
⑴试判断四边形ABCD的形状。
⑵如图若点P是线段BD上一点PE⊥BC于E,M是PD的中点,连EM、AM。
求证:AM=EM
⑶在图中,连结AE交BD于N,则下列两个结论:
①值不变;②的值不变。其中有且仅有一个是正确的,请选择正确的结论证明并求其值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1 , x2 .
(1)求k的取值范围;
(2)若|x1+x2|=x1x2﹣1,求k的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利 润捐助给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y (单位:个)与
销售单价x(单位:元/个)之间的对应关系如图所示:
(1)y与x之间的函数关系是 .
(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(单位:元)与销售单价x(单位:元/个)之间的函数关系式;
(3)在(2)问的条件下,若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张大伯从报社以每份0.4元的价格购进了份报纸,以每份0.5元的价格售出了份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入()元
A. 0.7b-0.6a B. 0.5b-0.2a C. 0.7b-0.6a D. 0.3b-0.2a
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线 与x轴的负半轴交于点A,与y轴交于点B,连结AB.点C 在抛物线上,直线AC与y轴交于点D.
(1)求c的值及直线AC的函数表达式;
(2)点P在x轴的正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点.
①求证:△APM∽△AON;
②设点M的横坐标为m , 求AN的长(用含m的代数式表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com