精英家教网 > 初中数学 > 题目详情

已知:如图,在△ABC中,∠ABC=90°.DC⊥AC于点C,且CD=CA,DE⊥BC交BC的延长线于点E.
求证:AB=CE.

证明:∵DC⊥AC于点C,
∴∠ACB+∠DCB=90°
∵∠ABC=90°,
∴∠ACB+∠A=90°
∴∠A=∠DCE
∵DE⊥BC于点E,
∴∠E=90°
∴∠B=∠E.
∵在△ABC和△CED中,

∴△ABC≌△CED(AAS).
∴AB=CE.
分析:根据余角的性质证得∠A=∠DCE,然后根据AAS即可证得△ABC≌△CED,据全等三角形的对应边相等,即可证得.
点评:本题考查了全等三角形的判定与性质,证明线段相等的基本思路是证明三角形全等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案