分析 先根据角平分线的性质求出∠DBC、∠DCB与∠A的关系,再根据三角形内角和定理求解即可.
解答 证明:∵BD、CD是∠ABC和∠ACB的角平分线,
∴∠DBC=$\frac{1}{2}$∠ABC,∠DCB=$\frac{1}{2}$∠ACB,
∵∠ABC+∠ACB=180°-∠A,
∴∠BDC=180°-∠DBC-∠DCB=180°-$\frac{1}{2}$(∠ABC+∠ACB)=180°-$\frac{1}{2}$(180°-∠A)=90°+$\frac{1}{2}$∠A,
∴∠BDC=90°+$\frac{1}{2}$∠A.
点评 本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com