精英家教网 > 初中数学 > 题目详情

【题目】在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图

(1)指出旋转中心,并求出旋转角的度数.

(2)求出∠BAE的度数和AE的长.

【答案】(1)150°;(2)2

【解析】分析:(1)先根据三角形内角和计算出∠BAC=150°,然后利用旋转的定义可判断旋转中心为点A,旋转角为150°;(2)根据旋转的性质得到∠DAE=BAC=150°AB=AD=4AC=AE,利用周角定义可得到∠BAE=60°,然后利用点CAD中点得到AC=AD=2,于是得到AE=2

本题解析:

解:(1)在△ABC中,∵∠B+∠ACB=30°, ∴∠BAC=150°,

当△ABC逆时针旋转一定角度后与△ADE重合,

∴旋转中心为点A,∠BAD等于旋转角,即旋转角为150°;

(2)∵△ABC绕点A逆时针旋转150°后与△ADE重合,

∴∠DAE=∠BAC=150°,AB=AD=4,AC=AE, ∴∠BAE=360°-150°-150°=60°,

∵点C为AD中点, ∴AC=AD=2, ∴AE=2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.

1)购买一个足球、一个篮球各需多少元?

2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:某数学兴趣小组把两个等腰直角三角形的直角顶点重合,发现了一些有趣的结论.

结论一:

1)如图1,在ABCADE中,∠BAC=∠DAE90°ABACADAE,连接BDCE,试说明ADB≌△AEC

结论二:

2)如图2,在(1)的条件下,若点EBC边上,试说明DBBC

应用:

3)如图3,在四边形ABCD中,∠ABC=∠ADC90°ABCB,∠BAD+BCD180°,连接BDBD7cm,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某城市规定:出租车起步价允许行驶的最远路程为3千米,超过3千米的部分按每千米另行收费,甲说:我乘这种出租车走了11千米,付了17;乙说:我乘这种出租车走了23千米,付了35.请你算一算这种出租车的起步价是多少元?以及超过3千米后,每千米的车费是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为:A1,﹣4),B5,﹣4),C4,﹣1).

1)将△ABC经过平移得到△A1B1C1,若点C的应点C1的坐标为(25),则点AB的对应点A1B1的坐标分别为   

2)在如图的坐标系中画出△A1B1C1,并画出与△A1B1C1关于原点O成中心对称的△A2B2C2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为加快“秀美荆河水系生态治理工程”进度,污水处理厂决定购买10台污水处理设备.现有AB两种型号的设备,每台的价格分别为a万元,b万元,每月处理污水量分别为240吨,200吨.已知购买一台A型设备比购买一台B型设备多2万元,购买2A型设备比购买3B型设备少6万元.

1)求ab的值;

2)厂里预算购买污水处理设备的资金不超过105万元,你认为有哪几种购买方案;

3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为污水处理厂设计一种最省钱的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD是正方形,点GBC上的任意一点,DE⊥AGEBF∥DE,交AGF

求证:AF=BF+EF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在AB边上E处,EQBC相交于F,若AD8 cmAB6 cmAE4cm,则EBF的周长是______________ cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点EF分别在矩形ABCD的边ADAB上,连接EF,四边形ABFE沿EF翻折能与四边形重合,且ED相交,若,则  

A. B. C. D.

查看答案和解析>>

同步练习册答案