【题目】如图,在△ABC中,∠BAC=90°,AC=5,AB=12,∠BAC的平分线与BC的垂直平分线DG交于点D,DE⊥AC的延长线于点E,DF⊥AB于点F.
(1)求证:CE=BF;
(2)求DG的长.
【答案】(1)见解析;(2)6.5
【解析】
(1)要证明CE=BF,只要证明△DEC≌△DFB即可,根据题目中的条件和角平分线的性质可以得到两个三角形全等,从而可以证明结论成立;
(2)根据∠BAC=90°,AC=5,AB=12,可以求得BC的长,再根据DG垂直平分BC和直角三角形斜边上的中线等于斜边的一半,可以求得DG的长.
(1)证明:连接DC、DB,
∵DE⊥AC,DF⊥AB,AD平分∠CAB,
∴DE=DF,∠DEC=∠DFB=90°,
∵DG垂直平分BC,
∴DC=DB,
在Rt△DEC和Rt△DFB中,
DC=DB,DE=DF,
∴Rt△DEC≌Rt△DFB(HL)
∴CE=BF;
(2)∵∠BAC=90°,AC=5,AB=12,
∴BC==13,
由(1)知Rt△DEC≌Rt△DFB,
则∠EDC=∠FDB,
∵∠BAC=∠DEC=∠DFA=90°,
∴∠EDF=90°,
∴∠EDC+∠CDF=90°,
∴∠FDB+∠CDF=90°,
∴∠CDB=90°,
∵BC=13,DG垂直平分BC,
∴DG=6.5.
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,交y轴于C点,其中B点坐标为(3,0),C点坐标为(0,3),且图象对称轴为直线x=1.
(1)求此二次函数的关系式;
(2)P为二次函数y=ax2+bx+c图象上一点,且S△ABP=S△ABC,求P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程(a﹣1)x2+2x+a﹣1=0.
(1)若该方程有一根为2,求a的值及方程的另一根;
(2)当a为何值时,方程仅有一个根?求出此时a的值及方程的根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学习概念:
三角形一边的延长线与三角形另一边的夹角叫做三角形的外角.如图1中∠ACD是△AOC的外角,那么∠ACD与∠A、∠O之间有什么关系呢?
∵∠ACD=180°﹣∠ACO,∠A+∠O=180°﹣∠ACO
∴∠ACD=∠A+ ,
结论:三角形的外角等于与它不相邻的两个内角的 .
问题探究:
(1)如图2,已知:∠AOB=∠ACP=∠BDP=60°,且AO=BO,则△AOC △OBD;
(2)如图3,已知∠ACP=∠BDP=45°,且AO=BO,当∠AOB= °,△AOC≌△OBD;
应用结论:
(3)如图4,∠AOB=90°,OA=OB,AC⊥OP,BD⊥OP,请说明:AC=CD+BD.
拓展应用:
(4)如图5,四边形ABCD,AB=BC,BD平分∠ADC,AE∥CD,∠ABC+∠AEB=180°,EB=5,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格中,每个小正方形的边长为1个单位长度.平面直角坐标系的原点O在格点上, 轴、轴都在网格线上.线段AB的端点A、B在格点上.
(1)将线段AB绕点O逆时针90°得到线段A1B1,请在图中画出线段A1B1;
(2)在(1)的条件下,线段A2B2与线段A1B1关于原点O成中心对称,请在图中画出线段A2B2;
(3)在(1)、(2)的条件下,点P是此平面直角坐标系内的一点,当以点A、B、B2、P为顶点的四边形是平行四边形时,请直接写出点P的坐标: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是一个长为2a、宽为2b的长方形(其中a,b均为正数,且a>b),沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形。
(1)你认为图2中大正方形的边长为___;小正方形(阴影部分)的边长为___.(用含a、b的代数式表示)
(2)仔细观察图2,请你写出下列三个代数式:(ab),(a+b),ab所表示的图形面积之间的相等关系,并选取适合a、b的数值加以验证。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120度时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场计划购进A,B两种新型节能台灯共120盏,这两种台灯的进价、售价如表所示:
类型 价格 | 进价(元/盏) | 售价(元/盏) |
A型 | 30 | 45 |
B型 | 50 | 70 |
(1)若商场预计进货款为5200元,则这两种台灯各购进多少盏?
(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com